MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  replim Unicode version

Theorem replim 11531
Description: Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
replim  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )

Proof of Theorem replim
StepHypRef Expression
1 ax-cnre 8743 . 2  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
2 crre 11529 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3 crim 11530 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
43oveq2d 5773 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( _i  x.  (
Im `  ( x  +  ( _i  x.  y ) ) ) )  =  ( _i  x.  y ) )
52, 4oveq12d 5775 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( Re `  ( x  +  (
_i  x.  y )
) )  +  ( _i  x.  ( Im
`  ( x  +  ( _i  x.  y
) ) ) ) )  =  ( x  +  ( _i  x.  y ) ) )
65eqcomd 2261 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  ( _i  x.  y ) )  =  ( ( Re `  ( x  +  ( _i  x.  y ) ) )  +  ( _i  x.  ( Im `  ( x  +  ( _i  x.  y ) ) ) ) ) )
7 id 21 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
8 fveq2 5423 . . . . . 6  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
Re `  A )  =  ( Re `  ( x  +  (
_i  x.  y )
) ) )
9 fveq2 5423 . . . . . . 7  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
Im `  A )  =  ( Im `  ( x  +  (
_i  x.  y )
) ) )
109oveq2d 5773 . . . . . 6  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
_i  x.  ( Im `  A ) )  =  ( _i  x.  (
Im `  ( x  +  ( _i  x.  y ) ) ) ) )
118, 10oveq12d 5775 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( Re
`  ( x  +  ( _i  x.  y
) ) )  +  ( _i  x.  (
Im `  ( x  +  ( _i  x.  y ) ) ) ) ) )
127, 11eqeq12d 2270 . . . 4  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A  =  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  <->  ( x  +  ( _i  x.  y ) )  =  ( ( Re `  ( x  +  (
_i  x.  y )
) )  +  ( _i  x.  ( Im
`  ( x  +  ( _i  x.  y
) ) ) ) ) ) )
136, 12syl5ibrcom 215 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  ->  A  =  ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) ) )
1413rexlimivv 2643 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
151, 14syl 17 1  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   E.wrex 2517   ` cfv 4638  (class class class)co 5757   CCcc 8668   RRcr 8669   _ici 8672    + caddc 8673    x. cmul 8675   Recre 11512   Imcim 11513
This theorem is referenced by:  remim  11532  reim0b  11534  rereb  11535  mulre  11536  cjreb  11538  reneg  11540  readd  11541  remullem  11543  imneg  11548  imadd  11549  cjcj  11555  imval2  11566  cnrecnv  11580  replimi  11585  replimd  11612  recan  11750  efeul  12369  absef  12404  absefib  12405  efieq1re  12406  cnsubrg  16359  itgconst  19100  tanregt0  19828  tanarg  19897
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-po 4251  df-so 4252  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-iota 6190  df-riota 6237  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-2 9737  df-cj 11514  df-re 11515  df-im 11516
  Copyright terms: Public domain W3C validator