Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resco Structured version   Unicode version

Theorem resco 5377
 Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resco

Proof of Theorem resco
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5177 . 2
2 relco 5371 . 2
3 vex 2961 . . . . . 6
4 vex 2961 . . . . . 6
53, 4brco 5046 . . . . 5
65anbi1i 678 . . . 4
7 19.41v 1925 . . . 4
8 an32 775 . . . . . 6
9 vex 2961 . . . . . . . 8
109brres 5155 . . . . . . 7
1110anbi1i 678 . . . . . 6
128, 11bitr4i 245 . . . . 5
1312exbii 1593 . . . 4
146, 7, 133bitr2i 266 . . 3
154brres 5155 . . 3
163, 4brco 5046 . . 3
1714, 15, 163bitr4i 270 . 2
181, 2, 17eqbrriv 4974 1
 Colors of variables: wff set class Syntax hints:   wa 360  wex 1551   wceq 1653   wcel 1726   class class class wbr 4215   cres 4883   ccom 4885 This theorem is referenced by:  cocnvcnv2  5384  coires1  5390  relcoi1  5401  dftpos2  6499  canthp1lem2  8533  o1res  12359  gsumzaddlem  15531  tsmsf1o  18179  tsmsmhm  18180  mbfres  19539  hhssims  22780  erdsze2lem2  24895  cvmlift2lem9a  24995  mbfresfi  26265  cocnv  26441  diophrw  26831  eldioph2  26834  funcoressn  27981 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-xp 4887  df-rel 4888  df-co 4890  df-res 4893
 Copyright terms: Public domain W3C validator