MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfunexg Unicode version

Theorem resfunexg 5753
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
resfunexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )

Proof of Theorem resfunexg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funres 5309 . . . . . . 7  |-  ( Fun 
A  ->  Fun  ( A  |`  B ) )
21adantr 451 . . . . . 6  |-  ( ( Fun  A  /\  B  e.  C )  ->  Fun  ( A  |`  B ) )
3 funfn 5299 . . . . . 6  |-  ( Fun  ( A  |`  B )  <-> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
42, 3sylib 188 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  Fn 
dom  ( A  |`  B ) )
5 dffn5 5584 . . . . 5  |-  ( ( A  |`  B )  Fn  dom  ( A  |`  B )  <->  ( A  |`  B )  =  ( x  e.  dom  ( A  |`  B )  |->  ( ( A  |`  B ) `
 x ) ) )
64, 5sylib 188 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  =  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) ) )
7 fvex 5555 . . . . 5  |-  ( ( A  |`  B ) `  x )  e.  _V
87fnasrn 5718 . . . 4  |-  ( x  e.  dom  ( A  |`  B )  |->  ( ( A  |`  B ) `  x ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )
96, 8syl6eq 2344 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
10 opex 4253 . . . . . 6  |-  <. x ,  ( ( A  |`  B ) `  x
) >.  e.  _V
11 eqid 2296 . . . . . 6  |-  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )  =  ( x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. )
1210, 11dmmpti 5389 . . . . 5  |-  dom  (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. )  =  dom  ( A  |`  B )
1312imaeq2i 5026 . . . 4  |-  ( ( x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )  =  ( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) )
14 imadmrn 5040 . . . 4  |-  ( ( x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )
1513, 14eqtr3i 2318 . . 3  |-  ( ( x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( A  |`  B ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )
169, 15syl6eqr 2346 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  =  ( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) ) )
17 funmpt 5306 . . 3  |-  Fun  (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. )
18 dmresexg 4994 . . . 4  |-  ( B  e.  C  ->  dom  ( A  |`  B )  e.  _V )
1918adantl 452 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  |`  B )  e.  _V )
20 funimaexg 5345 . . 3  |-  ( ( Fun  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )  /\  dom  ( A  |`  B )  e.  _V )  -> 
( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) )  e.  _V )
2117, 19, 20sylancr 644 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) " dom  ( A  |`  B ) )  e.  _V )
2216, 21eqeltrd 2370 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   <.cop 3656    e. cmpt 4093   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   Fun wfun 5265    Fn wfn 5266   ` cfv 5271
This theorem is referenced by:  cofunexg  5755  fnex  5757  ofexg  6098  dfac8alem  7672  dfac12lem1  7785  cfsmolem  7912  alephsing  7918  itunifval  8058  zorn2lem1  8139  ttukeylem3  8154  imadomg  8175  wunex2  8376  inar1  8413  axdc4uzlem  11060  1stf1  13982  1stf2  13983  2ndf1  13985  2ndf2  13986  1stfcl  13987  2ndfcl  13988  bpolylem  24855  valtar  25986  idcatfun  26044  domidmor  26051  codidmor  26053  grphidmor  26055  dnnumch1  27244  aomclem6  27259  tendo02  31598
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
  Copyright terms: Public domain W3C validator