MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfunexgALT Unicode version

Theorem resfunexgALT 5754
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. This version has a shorter proof than resfunexg 5753 but requires ax-pow 4204. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
resfunexgALT  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )

Proof of Theorem resfunexgALT
StepHypRef Expression
1 dmresexg 4994 . . . 4  |-  ( B  e.  C  ->  dom  ( A  |`  B )  e.  _V )
21adantl 452 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  |`  B )  e.  _V )
3 df-ima 4718 . . . 4  |-  ( A
" B )  =  ran  ( A  |`  B )
4 funimaexg 5345 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )
53, 4syl5eqelr 2381 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  |`  B )  e.  _V )
62, 5jca 518 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( dom  ( A  |`  B )  e.  _V  /\  ran  ( A  |`  B )  e.  _V ) )
7 xpexg 4816 . 2  |-  ( ( dom  ( A  |`  B )  e.  _V  /\ 
ran  ( A  |`  B )  e.  _V )  ->  ( dom  ( A  |`  B )  X. 
ran  ( A  |`  B ) )  e. 
_V )
8 relres 4999 . . . 4  |-  Rel  ( A  |`  B )
9 relssdmrn 5209 . . . 4  |-  ( Rel  ( A  |`  B )  ->  ( A  |`  B )  C_  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) ) )
108, 9ax-mp 8 . . 3  |-  ( A  |`  B )  C_  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )
11 ssexg 4176 . . 3  |-  ( ( ( A  |`  B ) 
C_  ( dom  ( A  |`  B )  X. 
ran  ( A  |`  B ) )  /\  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )  e.  _V )  ->  ( A  |`  B )  e.  _V )
1210, 11mpan 651 . 2  |-  ( ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )  e.  _V  ->  ( A  |`  B )  e.  _V )
136, 7, 123syl 18 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1696   _Vcvv 2801    C_ wss 3165    X. cxp 4703   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   Rel wrel 4710   Fun wfun 5265
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-fun 5273
  Copyright terms: Public domain W3C validator