MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  respreima Structured version   Unicode version

Theorem respreima 5851
Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
respreima  |-  ( Fun 
F  ->  ( `' ( F  |`  B )
" A )  =  ( ( `' F " A )  i^i  B
) )

Proof of Theorem respreima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funfn 5474 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 elin 3522 . . . . . . . . 9  |-  ( x  e.  ( B  i^i  dom 
F )  <->  ( x  e.  B  /\  x  e.  dom  F ) )
3 ancom 438 . . . . . . . . 9  |-  ( ( x  e.  B  /\  x  e.  dom  F )  <-> 
( x  e.  dom  F  /\  x  e.  B
) )
42, 3bitri 241 . . . . . . . 8  |-  ( x  e.  ( B  i^i  dom 
F )  <->  ( x  e.  dom  F  /\  x  e.  B ) )
54anbi1i 677 . . . . . . 7  |-  ( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x
)  e.  A )  <-> 
( ( x  e. 
dom  F  /\  x  e.  B )  /\  (
( F  |`  B ) `
 x )  e.  A ) )
6 fvres 5737 . . . . . . . . . 10  |-  ( x  e.  B  ->  (
( F  |`  B ) `
 x )  =  ( F `  x
) )
76eleq1d 2501 . . . . . . . . 9  |-  ( x  e.  B  ->  (
( ( F  |`  B ) `  x
)  e.  A  <->  ( F `  x )  e.  A
) )
87adantl 453 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  x  e.  B
)  ->  ( (
( F  |`  B ) `
 x )  e.  A  <->  ( F `  x )  e.  A
) )
98pm5.32i 619 . . . . . . 7  |-  ( ( ( x  e.  dom  F  /\  x  e.  B
)  /\  ( ( F  |`  B ) `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  x  e.  B )  /\  ( F `  x
)  e.  A ) )
105, 9bitri 241 . . . . . 6  |-  ( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x
)  e.  A )  <-> 
( ( x  e. 
dom  F  /\  x  e.  B )  /\  ( F `  x )  e.  A ) )
1110a1i 11 . . . . 5  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  x  e.  B )  /\  ( F `  x
)  e.  A ) ) )
12 an32 774 . . . . 5  |-  ( ( ( x  e.  dom  F  /\  x  e.  B
)  /\  ( F `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  /\  x  e.  B )
)
1311, 12syl6bb 253 . . . 4  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  /\  x  e.  B )
) )
14 fnfun 5534 . . . . . . . 8  |-  ( F  Fn  dom  F  ->  Fun  F )
15 funres 5484 . . . . . . . 8  |-  ( Fun 
F  ->  Fun  ( F  |`  B ) )
1614, 15syl 16 . . . . . . 7  |-  ( F  Fn  dom  F  ->  Fun  ( F  |`  B ) )
17 dmres 5159 . . . . . . 7  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
1816, 17jctir 525 . . . . . 6  |-  ( F  Fn  dom  F  -> 
( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  ( B  i^i  dom 
F ) ) )
19 df-fn 5449 . . . . . 6  |-  ( ( F  |`  B )  Fn  ( B  i^i  dom  F )  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  ( B  i^i  dom 
F ) ) )
2018, 19sylibr 204 . . . . 5  |-  ( F  Fn  dom  F  -> 
( F  |`  B )  Fn  ( B  i^i  dom 
F ) )
21 elpreima 5842 . . . . 5  |-  ( ( F  |`  B )  Fn  ( B  i^i  dom  F )  ->  ( x  e.  ( `' ( F  |`  B ) " A
)  <->  ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
) ) )
2220, 21syl 16 . . . 4  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' ( F  |`  B ) " A
)  <->  ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
) ) )
23 elin 3522 . . . . 5  |-  ( x  e.  ( ( `' F " A )  i^i  B )  <->  ( x  e.  ( `' F " A )  /\  x  e.  B ) )
24 elpreima 5842 . . . . . 6  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' F " A )  <-> 
( x  e.  dom  F  /\  ( F `  x )  e.  A
) ) )
2524anbi1d 686 . . . . 5  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( `' F " A )  /\  x  e.  B )  <->  ( (
x  e.  dom  F  /\  ( F `  x
)  e.  A )  /\  x  e.  B
) ) )
2623, 25syl5bb 249 . . . 4  |-  ( F  Fn  dom  F  -> 
( x  e.  ( ( `' F " A )  i^i  B
)  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  /\  x  e.  B )
) )
2713, 22, 263bitr4d 277 . . 3  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' ( F  |`  B ) " A
)  <->  x  e.  (
( `' F " A )  i^i  B
) ) )
281, 27sylbi 188 . 2  |-  ( Fun 
F  ->  ( x  e.  ( `' ( F  |`  B ) " A
)  <->  x  e.  (
( `' F " A )  i^i  B
) ) )
2928eqrdv 2433 1  |-  ( Fun 
F  ->  ( `' ( F  |`  B )
" A )  =  ( ( `' F " A )  i^i  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    i^i cin 3311   `'ccnv 4869   dom cdm 4870    |` cres 4872   "cima 4873   Fun wfun 5440    Fn wfn 5441   ` cfv 5446
This theorem is referenced by:  paste  17350  restmetu  18609
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454
  Copyright terms: Public domain W3C validator