MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressval2 Unicode version

Theorem ressval2 13445
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r  |-  R  =  ( Ws  A )
ressbas.b  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressval2  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )

Proof of Theorem ressval2
StepHypRef Expression
1 ressbas.r . . . 4  |-  R  =  ( Ws  A )
2 ressbas.b . . . 4  |-  B  =  ( Base `  W
)
31, 2ressval 13443 . . 3  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  R  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
4 iffalse 3689 . . 3  |-  ( -.  B  C_  A  ->  if ( B  C_  A ,  W ,  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
53, 4sylan9eqr 2441 . 2  |-  ( ( -.  B  C_  A  /\  ( W  e.  X  /\  A  e.  Y
) )  ->  R  =  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. ) )
653impb 1149 1  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    i^i cin 3262    C_ wss 3263   ifcif 3682   <.cop 3760   ` cfv 5394  (class class class)co 6020   ndxcnx 13393   sSet csts 13394   Basecbs 13396   ↾s cress 13397
This theorem is referenced by:  ressbas  13446  resslem  13449  ressinbas  13452  ressress  13453  rescabs  13960  mgpress  15586
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-iota 5358  df-fun 5396  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-ress 13403
  Copyright terms: Public domain W3C validator