MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restrcl Unicode version

Theorem restrcl 16890
Description: Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restrcl  |-  ( ( Jt  A )  e.  Top  ->  ( J  e.  _V  /\  A  e.  _V )
)

Proof of Theorem restrcl
StepHypRef Expression
1 0opn 16652 . . 3  |-  ( ( Jt  A )  e.  Top  -> 
(/)  e.  ( Jt  A
) )
2 n0i 3462 . . 3  |-  ( (/)  e.  ( Jt  A )  ->  -.  ( Jt  A )  =  (/) )
31, 2syl 15 . 2  |-  ( ( Jt  A )  e.  Top  ->  -.  ( Jt  A )  =  (/) )
4 restfn 13331 . . . 4  |-t  Fn  ( _V  X.  _V )
5 fndm 5345 . . . 4  |-  (t  Fn  ( _V  X.  _V )  ->  domt  =  ( _V  X.  _V ) )
64, 5ax-mp 8 . . 3  |-  domt  =  ( _V  X.  _V )
76ndmov 6006 . 2  |-  ( -.  ( J  e.  _V  /\  A  e.  _V )  ->  ( Jt  A )  =  (/) )
83, 7nsyl2 119 1  |-  ( ( Jt  A )  e.  Top  ->  ( J  e.  _V  /\  A  e.  _V )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   _Vcvv 2790   (/)c0 3457    X. cxp 4689   dom cdm 4691    Fn wfn 5252  (class class class)co 5860   ↾t crest 13327   Topctop 16633
This theorem is referenced by:  cnrest2r  17017  imacmp  17126  fiuncmp  17133  concompss  17161  kgeni  17234  kgencmp  17242  kgencmp2  17243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-rest 13329  df-top 16638
  Copyright terms: Public domain W3C validator