MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttop Unicode version

Theorem resttop 16854
Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89.  A is normally a subset of the base set of  J. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
resttop  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )

Proof of Theorem resttop
StepHypRef Expression
1 tgrest 16853 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( Jt  A
) )  =  ( ( topGen `  J )t  A
) )
2 tgtop 16674 . . . . 5  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
32adantr 453 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  J )  =  J )
43oveq1d 5807 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( ( topGen `  J
)t 
A )  =  ( Jt  A ) )
51, 4eqtrd 2290 . 2  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( Jt  A
) )  =  ( Jt  A ) )
6 topbas 16673 . . . 4  |-  ( J  e.  Top  ->  J  e. 
TopBases )
76adantr 453 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  J  e.  TopBases )
8 restbas 16852 . . 3  |-  ( J  e.  TopBases  ->  ( Jt  A )  e.  TopBases )
9 tgcl 16670 . . 3  |-  ( ( Jt  A )  e.  TopBases  -> 
( topGen `  ( Jt  A
) )  e.  Top )
107, 8, 93syl 20 . 2  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( Jt  A
) )  e.  Top )
115, 10eqeltrrd 2333 1  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   ` cfv 4673  (class class class)co 5792   ↾t crest 13288   topGenctg 13305   Topctop 16594   TopBasesctb 16598
This theorem is referenced by:  resttopon  16855  resttopon2  16862  rest0  16863  restcld  16866  restcls  16874  restntr  16875  ordtrest  16895  cmpsub  17090  fiuncmp  17094  1stcrest  17142  subislly  17170  llyrest  17174  nllyrest  17175  toplly  17179  cldllycmp  17184  kgencmp2  17204  llycmpkgen2  17208  1stckgen  17212  txkgen  17309  zdis  18285  cnmpt2pc  18389  dvbss  19214  dvreslem  19222  dvres2lem  19223  dvcnp2  19232  dvmptres  19275  ulmdvlem3  19742  psercn  19765  abelth  19780  cvxpcon  23146  cvmscld  23177  stfincomp  24959
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-recs 6356  df-rdg 6391  df-oadd 6451  df-er 6628  df-en 6832  df-fin 6835  df-fi 7133  df-rest 13290  df-topgen 13307  df-top 16599  df-bases 16601
  Copyright terms: Public domain W3C validator