MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttop Unicode version

Theorem resttop 16893
Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89.  A is normally a subset of the base set of  J. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
resttop  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )

Proof of Theorem resttop
StepHypRef Expression
1 tgrest 16892 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( Jt  A
) )  =  ( ( topGen `  J )t  A
) )
2 tgtop 16713 . . . . 5  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
32adantr 451 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  J )  =  J )
43oveq1d 5875 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( ( topGen `  J
)t 
A )  =  ( Jt  A ) )
51, 4eqtrd 2317 . 2  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( Jt  A
) )  =  ( Jt  A ) )
6 topbas 16712 . . . 4  |-  ( J  e.  Top  ->  J  e. 
TopBases )
76adantr 451 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  J  e.  TopBases )
8 restbas 16891 . . 3  |-  ( J  e.  TopBases  ->  ( Jt  A )  e.  TopBases )
9 tgcl 16709 . . 3  |-  ( ( Jt  A )  e.  TopBases  -> 
( topGen `  ( Jt  A
) )  e.  Top )
107, 8, 93syl 18 . 2  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( Jt  A
) )  e.  Top )
115, 10eqeltrrd 2360 1  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   ` cfv 5257  (class class class)co 5860   ↾t crest 13327   topGenctg 13344   Topctop 16633   TopBasesctb 16637
This theorem is referenced by:  resttopon  16894  resttopon2  16901  rest0  16902  restcld  16905  restcls  16913  restntr  16914  ordtrest  16934  cmpsub  17129  fiuncmp  17133  1stcrest  17181  subislly  17209  llyrest  17213  nllyrest  17214  toplly  17218  cldllycmp  17223  kgencmp2  17243  llycmpkgen2  17247  1stckgen  17251  txkgen  17348  zdis  18324  cnmpt2pc  18428  dvbss  19253  dvreslem  19261  dvres2lem  19262  dvcnp2  19271  dvmptres  19314  ulmdvlem3  19781  psercn  19804  abelth  19819  cvxpcon  23775  cvmscld  23806  stfincomp  25602
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-recs 6390  df-rdg 6425  df-oadd 6485  df-er 6662  df-en 6866  df-fin 6869  df-fi 7167  df-rest 13329  df-topgen 13346  df-top 16638  df-bases 16640
  Copyright terms: Public domain W3C validator