MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundi Unicode version

Theorem resundi 5146
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
resundi  |-  ( A  |`  ( B  u.  C
) )  =  ( ( A  |`  B )  u.  ( A  |`  C ) )

Proof of Theorem resundi
StepHypRef Expression
1 xpundir 4917 . . . 4  |-  ( ( B  u.  C )  X.  _V )  =  ( ( B  X.  _V )  u.  ( C  X.  _V ) )
21ineq2i 3526 . . 3  |-  ( A  i^i  ( ( B  u.  C )  X. 
_V ) )  =  ( A  i^i  (
( B  X.  _V )  u.  ( C  X.  _V ) ) )
3 indi 3574 . . 3  |-  ( A  i^i  ( ( B  X.  _V )  u.  ( C  X.  _V ) ) )  =  ( ( A  i^i  ( B  X.  _V )
)  u.  ( A  i^i  ( C  X.  _V ) ) )
42, 3eqtri 2450 . 2  |-  ( A  i^i  ( ( B  u.  C )  X. 
_V ) )  =  ( ( A  i^i  ( B  X.  _V )
)  u.  ( A  i^i  ( C  X.  _V ) ) )
5 df-res 4876 . 2  |-  ( A  |`  ( B  u.  C
) )  =  ( A  i^i  ( ( B  u.  C )  X.  _V ) )
6 df-res 4876 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
7 df-res 4876 . . 3  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
86, 7uneq12i 3486 . 2  |-  ( ( A  |`  B )  u.  ( A  |`  C ) )  =  ( ( A  i^i  ( B  X.  _V ) )  u.  ( A  i^i  ( C  X.  _V )
) )
94, 5, 83eqtr4i 2460 1  |-  ( A  |`  ( B  u.  C
) )  =  ( ( A  |`  B )  u.  ( A  |`  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1652   _Vcvv 2943    u. cun 3305    i^i cin 3306    X. cxp 4862    |` cres 4866
This theorem is referenced by:  imaundi  5270  relresfld  5382  relcoi1  5384  resasplit  5599  fresaunres2  5601  fnsnsplit  5916  tfrlem16  6640  mapunen  7262  fnfi  7370  fseq1p1m1  11105  gsum2d  15529  dprd2da  15583  ptuncnv  17822  mbfres2  19520  evlseu  19920  eupath2lem3  21684  cvmliftlem10  24964  eldioph4b  26804  pwssplit4  27101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-v 2945  df-un 3312  df-in 3314  df-opab 4254  df-xp 4870  df-res 4876
  Copyright terms: Public domain W3C validator