Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reupick3 Structured version   Unicode version

Theorem reupick3 3614
 Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick3
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem reupick3
StepHypRef Expression
1 df-reu 2719 . . . 4
2 df-rex 2718 . . . . 5
3 anass 632 . . . . . 6
43exbii 1593 . . . . 5
52, 4bitr4i 245 . . . 4
6 eupick 2351 . . . 4
71, 5, 6syl2anb 467 . . 3
87exp3a 427 . 2
983impia 1151 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   w3a 937  wex 1551   wcel 1728  weu 2288  wrex 2713  wreu 2714 This theorem is referenced by:  reupick2  3615 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-rex 2718  df-reu 2719
 Copyright terms: Public domain W3C validator