Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexfrabdioph Unicode version

Theorem rexfrabdioph 26199
Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypothesis
Ref Expression
rexfrabdioph.1  |-  M  =  ( N  +  1 )
Assertion
Ref Expression
rexfrabdioph  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ph }  e.  (Dioph `  N ) )
Distinct variable groups:    u, t,
v, M    t, N, u, v    ph, t
Allowed substitution hints:    ph( v, u)

Proof of Theorem rexfrabdioph
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2494 . . 3  |-  F/_ u
( NN0  ^m  (
1 ... N ) )
2 nfcv 2494 . . 3  |-  F/_ a
( NN0  ^m  (
1 ... N ) )
3 nfv 1619 . . 3  |-  F/ a E. v  e.  NN0  ph
4 nfcv 2494 . . . 4  |-  F/_ u NN0
5 nfsbc1v 3086 . . . 4  |-  F/ u [. a  /  u ]. [. b  /  v ]. ph
64, 5nfrex 2674 . . 3  |-  F/ u E. b  e.  NN0  [. a  /  u ]. [. b  /  v ]. ph
7 nfv 1619 . . . . 5  |-  F/ b
ph
8 nfsbc1v 3086 . . . . 5  |-  F/ v
[. b  /  v ]. ph
9 sbceq1a 3077 . . . . 5  |-  ( v  =  b  ->  ( ph 
<-> 
[. b  /  v ]. ph ) )
107, 8, 9cbvrex 2837 . . . 4  |-  ( E. v  e.  NN0  ph  <->  E. b  e.  NN0  [. b  /  v ]. ph )
11 sbceq1a 3077 . . . . 5  |-  ( u  =  a  ->  ( [. b  /  v ]. ph  <->  [. a  /  u ]. [. b  /  v ]. ph ) )
1211rexbidv 2640 . . . 4  |-  ( u  =  a  ->  ( E. b  e.  NN0  [. b  /  v ]. ph  <->  E. b  e.  NN0  [. a  /  u ]. [. b  /  v ]. ph )
)
1310, 12syl5bb 248 . . 3  |-  ( u  =  a  ->  ( E. v  e.  NN0  ph  <->  E. b  e.  NN0  [. a  /  u ]. [. b  /  v ]. ph )
)
141, 2, 3, 6, 13cbvrab 2862 . 2  |-  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  ph }  =  {
a  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. b  e.  NN0  [. a  /  u ]. [. b  /  v ]. ph }
15 rexfrabdioph.1 . . 3  |-  M  =  ( N  +  1 )
16 dfsbcq 3069 . . . 4  |-  ( b  =  ( t `  M )  ->  ( [. b  /  v ]. ph  <->  [. ( t `  M )  /  v ]. ph ) )
1716sbcbidv 3121 . . 3  |-  ( b  =  ( t `  M )  ->  ( [. a  /  u ]. [. b  /  v ]. ph  <->  [. a  /  u ]. [. ( t `  M )  /  v ]. ph ) )
18 dfsbcq 3069 . . 3  |-  ( a  =  ( t  |`  ( 1 ... N
) )  ->  ( [. a  /  u ]. [. ( t `  M )  /  v ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. ph ) )
1915, 17, 18rexrabdioph 26198 . 2  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. ph }  e.  (Dioph `  M ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  [. a  /  u ]. [. b  /  v ]. ph }  e.  (Dioph `  N ) )
2014, 19syl5eqel 2442 1  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ph }  e.  (Dioph `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   E.wrex 2620   {crab 2623   [.wsbc 3067    |` cres 4770   ` cfv 5334  (class class class)co 5942    ^m cmap 6857   1c1 8825    + caddc 8827   NN0cn0 10054   ...cfz 10871  Diophcdioph 26157
This theorem is referenced by:  2rexfrabdioph  26200  3rexfrabdioph  26201  7rexfrabdioph  26204  rmxdioph  26432  expdiophlem2  26438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-of 6162  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-er 6744  df-map 6859  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-card 7659  df-cda 7881  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-nn 9834  df-n0 10055  df-z 10114  df-uz 10320  df-fz 10872  df-hash 11428  df-mzpcl 26124  df-mzp 26125  df-dioph 26158
  Copyright terms: Public domain W3C validator