MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexlimdvaa Unicode version

Theorem rexlimdvaa 2669
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.)
Hypothesis
Ref Expression
rexlimdvaa.1  |-  ( (
ph  /\  ( x  e.  A  /\  ps )
)  ->  ch )
Assertion
Ref Expression
rexlimdvaa  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Distinct variable groups:    ph, x    ch, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem rexlimdvaa
StepHypRef Expression
1 rexlimdvaa.1 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  ps )
)  ->  ch )
21expr 600 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )
32rexlimdva 2668 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1685   E.wrex 2545
This theorem is referenced by:  rexlimddv  2672  sscpwex  13686
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-6 1704  ax-11 1716
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1530  df-nf 1533  df-ral 2549  df-rex 2550
  Copyright terms: Public domain W3C validator