Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexrabdioph Unicode version

Theorem rexrabdioph 26978
Description: Diophantine set builder for existential quantification. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Hypotheses
Ref Expression
rexrabdioph.1  |-  M  =  ( N  +  1 )
rexrabdioph.2  |-  ( v  =  ( t `  M )  ->  ( ps 
<->  ch ) )
rexrabdioph.3  |-  ( u  =  ( t  |`  ( 1 ... N
) )  ->  ( ch 
<-> 
ph ) )
Assertion
Ref Expression
rexrabdioph  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ps }  e.  (Dioph `  N ) )
Distinct variable groups:    t, N, u, v    t, M, u, v    ph, u, v    ps, t    ch, v
Allowed substitution hints:    ph( t)    ps( v, u)    ch( u, t)

Proof of Theorem rexrabdioph
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2565 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps }  =  { a  |  ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps ) }
2 dfsbcq 3006 . . . . . . . . . . 11  |-  ( b  =  c  ->  ( [. b  /  v ]. [. a  /  u ]. ps  <->  [. c  /  v ]. [. a  /  u ]. ps ) )
32cbvrexv 2778 . . . . . . . . . 10  |-  ( E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps  <->  E. c  e.  NN0  [. c  /  v ]. [. a  /  u ]. ps )
43anbi2i 675 . . . . . . . . 9  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )  <->  ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. c  e.  NN0  [. c  /  v ]. [. a  /  u ]. ps )
)
5 r19.42v 2707 . . . . . . . . 9  |-  ( E. c  e.  NN0  (
a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  [. c  /  v ]. [. a  /  u ]. ps )  <->  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. c  e. 
NN0  [. c  /  v ]. [. a  /  u ]. ps ) )
64, 5bitr4i 243 . . . . . . . 8  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )  <->  E. c  e.  NN0  (
a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  [. c  /  v ]. [. a  /  u ]. ps ) )
7 simpll 730 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  N  e.  NN0 )
8 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  a  e.  ( NN0  ^m  ( 1 ... N ) ) )
9 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  c  e.  NN0 )
10 rexrabdioph.1 . . . . . . . . . . . . . . 15  |-  M  =  ( N  +  1 )
1110mapfzcons 26896 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  a  e.  ( NN0  ^m  ( 1 ... N
) )  /\  c  e.  NN0 )  ->  (
a  u.  { <. M ,  c >. } )  e.  ( NN0  ^m  ( 1 ... M
) ) )
127, 8, 9, 11syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( a  u. 
{ <. M ,  c
>. } )  e.  ( NN0  ^m  ( 1 ... M ) ) )
1312adantrr 697 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )  ->  ( a  u. 
{ <. M ,  c
>. } )  e.  ( NN0  ^m  ( 1 ... M ) ) )
1410mapfzcons2 26899 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  c  e.  NN0 )  -> 
( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  =  c )
158, 9, 14syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( ( a  u.  { <. M , 
c >. } ) `  M )  =  c )
1615eqcomd 2301 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  c  =  ( ( a  u.  { <. M ,  c >. } ) `  M
) )
17 dfsbcq 3006 . . . . . . . . . . . . . . . 16  |-  ( c  =  ( ( a  u.  { <. M , 
c >. } ) `  M )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  <->  [. ( ( a  u.  { <. M , 
c >. } ) `  M )  /  v ]. [. a  /  u ]. ps ) )
1816, 17syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  <->  [. ( ( a  u.  { <. M ,  c >. } ) `
 M )  / 
v ]. [. a  /  u ]. ps ) )
1910mapfzcons1 26897 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
( a  u.  { <. M ,  c >. } )  |`  (
1 ... N ) )  =  a )
208, 19syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  =  a )
2120eqcomd 2301 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  a  =  ( ( a  u.  { <. M ,  c >. } )  |`  (
1 ... N ) ) )
22 dfsbcq 3006 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  ->  ( [. a  /  u ]. ps  <->  [. ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  /  u ]. ps ) )
2321, 22syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. a  /  u ]. ps  <->  [. ( ( a  u.  { <. M ,  c >. } )  |`  ( 1 ... N
) )  /  u ]. ps ) )
2423sbcbidv 3058 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. (
( a  u.  { <. M ,  c >. } ) `  M
)  /  v ]. [. a  /  u ]. ps 
<-> 
[. ( ( a  u.  { <. M , 
c >. } ) `  M )  /  v ]. [. ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  /  u ]. ps ) )
2518, 24bitrd 244 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  <->  [. ( ( a  u.  { <. M ,  c >. } ) `
 M )  / 
v ]. [. ( ( a  u.  { <. M ,  c >. } )  |`  ( 1 ... N
) )  /  u ]. ps ) )
2625biimpd 198 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  ->  [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
2726impr 602 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )  ->  [. ( ( a  u.  { <. M , 
c >. } ) `  M )  /  v ]. [. ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  /  u ]. ps )
2821adantrr 697 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )  ->  a  =  ( ( a  u.  { <. M ,  c >. } )  |`  (
1 ... N ) ) )
29 fveq1 5540 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  (
b `  M )  =  ( ( a  u.  { <. M , 
c >. } ) `  M ) )
30 dfsbcq 3006 . . . . . . . . . . . . . . . 16  |-  ( ( b `  M )  =  ( ( a  u.  { <. M , 
c >. } ) `  M )  ->  ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
3129, 30syl 15 . . . . . . . . . . . . . . 15  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
32 reseq1 4965 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  (
b  |`  ( 1 ... N ) )  =  ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) ) )
33 dfsbcq 3006 . . . . . . . . . . . . . . . . 17  |-  ( ( b  |`  ( 1 ... N ) )  =  ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  ->  ( [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
3432, 33syl 15 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  ( [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
3534sbcbidv 3058 . . . . . . . . . . . . . . 15  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  ( [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
3631, 35bitrd 244 . . . . . . . . . . . . . 14  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
3732eqeq2d 2307 . . . . . . . . . . . . . 14  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  a  =  ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) ) ) )
3836, 37anbi12d 691 . . . . . . . . . . . . 13  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  (
( [. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( [. (
( a  u.  { <. M ,  c >. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps  /\  a  =  ( ( a  u.  { <. M ,  c >. } )  |`  ( 1 ... N
) ) ) ) )
3938rspcev 2897 . . . . . . . . . . . 12  |-  ( ( ( a  u.  { <. M ,  c >. } )  e.  ( NN0  ^m  ( 1 ... M ) )  /\  ( [. (
( a  u.  { <. M ,  c >. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps  /\  a  =  ( ( a  u.  { <. M ,  c >. } )  |`  ( 1 ... N
) ) ) )  ->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
4013, 27, 28, 39syl12anc 1180 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )  ->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
4140ex 423 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  c  e.  NN0 )  -> 
( ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps )  ->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) (
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
4241rexlimdva 2680 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( E. c  e.  NN0  (
a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  [. c  /  v ]. [. a  /  u ]. ps )  ->  E. b  e.  ( NN0  ^m  (
1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
43 elmapi 6808 . . . . . . . . . . . . . 14  |-  ( b  e.  ( NN0  ^m  ( 1 ... M
) )  ->  b : ( 1 ... M ) --> NN0 )
44 nn0p1nn 10019 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
4510, 44syl5eqel 2380 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  M  e.  NN )
46 elfz1end 10836 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  <->  M  e.  ( 1 ... M
) )
4745, 46sylib 188 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  M  e.  ( 1 ... M
) )
48 ffvelrn 5679 . . . . . . . . . . . . . 14  |-  ( ( b : ( 1 ... M ) --> NN0 
/\  M  e.  ( 1 ... M ) )  ->  ( b `  M )  e.  NN0 )
4943, 47, 48syl2anr 464 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  b  e.  ( NN0  ^m  ( 1 ... M
) ) )  -> 
( b `  M
)  e.  NN0 )
5049adantr 451 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  ( b `  M )  e.  NN0 )
51 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  a  =  ( b  |`  ( 1 ... N ) ) )
5210mapfzcons1cl 26898 . . . . . . . . . . . . . 14  |-  ( b  e.  ( NN0  ^m  ( 1 ... M
) )  ->  (
b  |`  ( 1 ... N ) )  e.  ( NN0  ^m  (
1 ... N ) ) )
5352ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  ( b  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) )
5451, 53eqeltrd 2370 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  a  e.  ( NN0  ^m  ( 1 ... N ) ) )
55 simprl 732 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  [. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps )
56 dfsbcq 3006 . . . . . . . . . . . . . . 15  |-  ( a  =  ( b  |`  ( 1 ... N
) )  ->  ( [. a  /  u ]. ps  <->  [. ( b  |`  ( 1 ... N
) )  /  u ]. ps ) )
5756sbcbidv 3058 . . . . . . . . . . . . . 14  |-  ( a  =  ( b  |`  ( 1 ... N
) )  ->  ( [. ( b `  M
)  /  v ]. [. a  /  u ]. ps 
<-> 
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps ) )
5857ad2antll 709 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  ( [. (
b `  M )  /  v ]. [. a  /  u ]. ps  <->  [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps ) )
5955, 58mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  [. ( b `  M )  /  v ]. [. a  /  u ]. ps )
60 dfsbcq 3006 . . . . . . . . . . . . . 14  |-  ( c  =  ( b `  M )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  <->  [. ( b `  M )  /  v ]. [. a  /  u ]. ps ) )
6160anbi2d 684 . . . . . . . . . . . . 13  |-  ( c  =  ( b `  M )  ->  (
( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps )  <->  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  [. ( b `
 M )  / 
v ]. [. a  /  u ]. ps ) ) )
6261rspcev 2897 . . . . . . . . . . . 12  |-  ( ( ( b `  M
)  e.  NN0  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. ( b `
 M )  / 
v ]. [. a  /  u ]. ps ) )  ->  E. c  e.  NN0  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )
6350, 54, 59, 62syl12anc 1180 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  E. c  e.  NN0  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )
6463ex 423 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  b  e.  ( NN0  ^m  ( 1 ... M
) ) )  -> 
( ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) )  ->  E. c  e.  NN0  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) ) )
6564rexlimdva 2680 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( E. b  e.  ( NN0 
^m  ( 1 ... M ) ) (
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) )  ->  E. c  e.  NN0  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) ) )
6642, 65impbid 183 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( E. c  e.  NN0  (
a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  [. c  /  v ]. [. a  /  u ]. ps )  <->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
676, 66syl5bb 248 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )  <->  E. b  e.  ( NN0 
^m  ( 1 ... M ) ) (
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
6867abbidv 2410 . . . . . 6  |-  ( N  e.  NN0  ->  { a  |  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. b  e. 
NN0  [. b  /  v ]. [. a  /  u ]. ps ) }  =  { a  |  E. b  e.  ( NN0  ^m  ( 1 ... M
) ) ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) } )
691, 68syl5eq 2340 . . . . 5  |-  ( N  e.  NN0  ->  { a  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps }  =  { a  |  E. b  e.  ( NN0  ^m  ( 1 ... M
) ) ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) } )
70 nfcv 2432 . . . . . 6  |-  F/_ u
( NN0  ^m  (
1 ... N ) )
71 nfcv 2432 . . . . . 6  |-  F/_ a
( NN0  ^m  (
1 ... N ) )
72 nfv 1609 . . . . . 6  |-  F/ a E. v  e.  NN0  ps
73 nfcv 2432 . . . . . . 7  |-  F/_ u NN0
74 nfcv 2432 . . . . . . . 8  |-  F/_ u
b
75 nfsbc1v 3023 . . . . . . . 8  |-  F/ u [. a  /  u ]. ps
7674, 75nfsbc 3025 . . . . . . 7  |-  F/ u [. b  /  v ]. [. a  /  u ]. ps
7773, 76nfrex 2611 . . . . . 6  |-  F/ u E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps
78 sbceq1a 3014 . . . . . . . 8  |-  ( u  =  a  ->  ( ps 
<-> 
[. a  /  u ]. ps ) )
7978rexbidv 2577 . . . . . . 7  |-  ( u  =  a  ->  ( E. v  e.  NN0  ps  <->  E. v  e.  NN0  [. a  /  u ]. ps )
)
80 nfv 1609 . . . . . . . 8  |-  F/ b
[. a  /  u ]. ps
81 nfsbc1v 3023 . . . . . . . 8  |-  F/ v
[. b  /  v ]. [. a  /  u ]. ps
82 sbceq1a 3014 . . . . . . . 8  |-  ( v  =  b  ->  ( [. a  /  u ]. ps  <->  [. b  /  v ]. [. a  /  u ]. ps ) )
8380, 81, 82cbvrex 2774 . . . . . . 7  |-  ( E. v  e.  NN0  [. a  /  u ]. ps  <->  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )
8479, 83syl6bb 252 . . . . . 6  |-  ( u  =  a  ->  ( E. v  e.  NN0  ps  <->  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )
)
8570, 71, 72, 77, 84cbvrab 2799 . . . . 5  |-  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  ps }  =  {
a  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps }
86 fveq1 5540 . . . . . . . . 9  |-  ( t  =  b  ->  (
t `  M )  =  ( b `  M ) )
87 dfsbcq 3006 . . . . . . . . 9  |-  ( ( t `  M )  =  ( b `  M )  ->  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps ) )
8886, 87syl 15 . . . . . . . 8  |-  ( t  =  b  ->  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps ) )
89 reseq1 4965 . . . . . . . . . 10  |-  ( t  =  b  ->  (
t  |`  ( 1 ... N ) )  =  ( b  |`  (
1 ... N ) ) )
90 dfsbcq 3006 . . . . . . . . . 10  |-  ( ( t  |`  ( 1 ... N ) )  =  ( b  |`  ( 1 ... N
) )  ->  ( [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
9189, 90syl 15 . . . . . . . . 9  |-  ( t  =  b  ->  ( [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
9291sbcbidv 3058 . . . . . . . 8  |-  ( t  =  b  ->  ( [. ( b `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
9388, 92bitrd 244 . . . . . . 7  |-  ( t  =  b  ->  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
9493rexrab 2942 . . . . . 6  |-  ( E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M
) )  |  [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps } a  =  ( b  |`  ( 1 ... N ) )  <->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) (
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
9594abbii 2408 . . . . 5  |-  { a  |  E. b  e. 
{ t  e.  ( NN0  ^m  ( 1 ... M ) )  |  [. ( t `
 M )  / 
v ]. [. ( t  |`  ( 1 ... N
) )  /  u ]. ps } a  =  ( b  |`  (
1 ... N ) ) }  =  { a  |  E. b  e.  ( NN0  ^m  (
1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) }
9669, 85, 953eqtr4g 2353 . . . 4  |-  ( N  e.  NN0  ->  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  ps }  =  {
a  |  E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M ) )  |  [. ( t `
 M )  / 
v ]. [. ( t  |`  ( 1 ... N
) )  /  u ]. ps } a  =  ( b  |`  (
1 ... N ) ) } )
97 fvex 5555 . . . . . . . . 9  |-  ( t `
 M )  e. 
_V
98 vex 2804 . . . . . . . . . 10  |-  t  e. 
_V
9998resex 5011 . . . . . . . . 9  |-  ( t  |`  ( 1 ... N
) )  e.  _V
100 rexrabdioph.2 . . . . . . . . . 10  |-  ( v  =  ( t `  M )  ->  ( ps 
<->  ch ) )
101 rexrabdioph.3 . . . . . . . . . 10  |-  ( u  =  ( t  |`  ( 1 ... N
) )  ->  ( ch 
<-> 
ph ) )
102100, 101sylan9bb 680 . . . . . . . . 9  |-  ( ( v  =  ( t `
 M )  /\  u  =  ( t  |`  ( 1 ... N
) ) )  -> 
( ps  <->  ph ) )
10397, 99, 102sbc2ie 3071 . . . . . . . 8  |-  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  ph )
104103a1i 10 . . . . . . 7  |-  ( t  e.  ( NN0  ^m  ( 1 ... M
) )  ->  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  ph ) )
105104rabbiia 2791 . . . . . 6  |-  { t  e.  ( NN0  ^m  ( 1 ... M
) )  |  [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps }  =  { t  e.  ( NN0  ^m  (
1 ... M ) )  |  ph }
106105rexeqi 2754 . . . . 5  |-  ( E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M
) )  |  [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps } a  =  ( b  |`  ( 1 ... N ) )  <->  E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M
) )  |  ph } a  =  ( b  |`  ( 1 ... N ) ) )
107106abbii 2408 . . . 4  |-  { a  |  E. b  e. 
{ t  e.  ( NN0  ^m  ( 1 ... M ) )  |  [. ( t `
 M )  / 
v ]. [. ( t  |`  ( 1 ... N
) )  /  u ]. ps } a  =  ( b  |`  (
1 ... N ) ) }  =  { a  |  E. b  e. 
{ t  e.  ( NN0  ^m  ( 1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) }
10896, 107syl6eq 2344 . . 3  |-  ( N  e.  NN0  ->  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  ps }  =  {
a  |  E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) } )
109108adantr 451 . 2  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ps }  =  { a  |  E. b  e. 
{ t  e.  ( NN0  ^m  ( 1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) } )
110 simpl 443 . . 3  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  N  e.  NN0 )
111 nn0z 10062 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
112 uzid 10258 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
113 peano2uz 10288 . . . . . 6  |-  ( N  e.  ( ZZ>= `  N
)  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
114111, 112, 1133syl 18 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
11510, 114syl5eqel 2380 . . . 4  |-  ( N  e.  NN0  ->  M  e.  ( ZZ>= `  N )
)
116115adantr 451 . . 3  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  M  e.  ( ZZ>= `  N ) )
117 simpr 447 . . 3  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... M ) )  |  ph }  e.  (Dioph `  M ) )
118 diophrex 26958 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  {
t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { a  |  E. b  e.  { t  e.  ( NN0  ^m  (
1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
119110, 116, 117, 118syl3anc 1182 . 2  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { a  |  E. b  e.  { t  e.  ( NN0  ^m  (
1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
120109, 119eqeltrd 2370 1  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ps }  e.  (Dioph `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   E.wrex 2557   {crab 2560   [.wsbc 3004    u. cun 3163   {csn 3653   <.cop 3656    |` cres 4707   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   1c1 8754    + caddc 8756   NNcn 9762   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798  Diophcdioph 26937
This theorem is referenced by:  rexfrabdioph  26979  elnn0rabdioph  26987  dvdsrabdioph  26994
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-hash 11354  df-mzpcl 26904  df-mzp 26905  df-dioph 26938
  Copyright terms: Public domain W3C validator