Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexrabdioph Structured version   Unicode version

Theorem rexrabdioph 26868
Description: Diophantine set builder for existential quantification. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Hypotheses
Ref Expression
rexrabdioph.1  |-  M  =  ( N  +  1 )
rexrabdioph.2  |-  ( v  =  ( t `  M )  ->  ( ps 
<->  ch ) )
rexrabdioph.3  |-  ( u  =  ( t  |`  ( 1 ... N
) )  ->  ( ch 
<-> 
ph ) )
Assertion
Ref Expression
rexrabdioph  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ps }  e.  (Dioph `  N ) )
Distinct variable groups:    t, N, u, v    t, M, u, v    ph, u, v    ps, t    ch, v
Allowed substitution hints:    ph( t)    ps( v, u)    ch( u, t)

Proof of Theorem rexrabdioph
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2716 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps }  =  { a  |  ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps ) }
2 dfsbcq 3165 . . . . . . . . . . 11  |-  ( b  =  c  ->  ( [. b  /  v ]. [. a  /  u ]. ps  <->  [. c  /  v ]. [. a  /  u ]. ps ) )
32cbvrexv 2935 . . . . . . . . . 10  |-  ( E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps  <->  E. c  e.  NN0  [. c  /  v ]. [. a  /  u ]. ps )
43anbi2i 677 . . . . . . . . 9  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )  <->  ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. c  e.  NN0  [. c  /  v ]. [. a  /  u ]. ps )
)
5 r19.42v 2864 . . . . . . . . 9  |-  ( E. c  e.  NN0  (
a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  [. c  /  v ]. [. a  /  u ]. ps )  <->  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. c  e. 
NN0  [. c  /  v ]. [. a  /  u ]. ps ) )
64, 5bitr4i 245 . . . . . . . 8  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )  <->  E. c  e.  NN0  (
a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  [. c  /  v ]. [. a  /  u ]. ps ) )
7 simpll 732 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  N  e.  NN0 )
8 simpr 449 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  a  e.  ( NN0  ^m  ( 1 ... N ) ) )
9 simplr 733 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  c  e.  NN0 )
10 rexrabdioph.1 . . . . . . . . . . . . . . 15  |-  M  =  ( N  +  1 )
1110mapfzcons 26786 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  a  e.  ( NN0  ^m  ( 1 ... N
) )  /\  c  e.  NN0 )  ->  (
a  u.  { <. M ,  c >. } )  e.  ( NN0  ^m  ( 1 ... M
) ) )
127, 8, 9, 11syl3anc 1185 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( a  u. 
{ <. M ,  c
>. } )  e.  ( NN0  ^m  ( 1 ... M ) ) )
1312adantrr 699 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )  ->  ( a  u. 
{ <. M ,  c
>. } )  e.  ( NN0  ^m  ( 1 ... M ) ) )
1410mapfzcons2 26789 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  c  e.  NN0 )  -> 
( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  =  c )
158, 9, 14syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( ( a  u.  { <. M , 
c >. } ) `  M )  =  c )
1615eqcomd 2443 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  c  =  ( ( a  u.  { <. M ,  c >. } ) `  M
) )
17 dfsbcq 3165 . . . . . . . . . . . . . . . 16  |-  ( c  =  ( ( a  u.  { <. M , 
c >. } ) `  M )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  <->  [. ( ( a  u.  { <. M , 
c >. } ) `  M )  /  v ]. [. a  /  u ]. ps ) )
1816, 17syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  <->  [. ( ( a  u.  { <. M ,  c >. } ) `
 M )  / 
v ]. [. a  /  u ]. ps ) )
1910mapfzcons1 26787 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
( a  u.  { <. M ,  c >. } )  |`  (
1 ... N ) )  =  a )
208, 19syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  =  a )
2120eqcomd 2443 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  a  =  ( ( a  u.  { <. M ,  c >. } )  |`  (
1 ... N ) ) )
22 dfsbcq 3165 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  ->  ( [. a  /  u ]. ps  <->  [. ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  /  u ]. ps ) )
2321, 22syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. a  /  u ]. ps  <->  [. ( ( a  u.  { <. M ,  c >. } )  |`  ( 1 ... N
) )  /  u ]. ps ) )
2423sbcbidv 3217 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. (
( a  u.  { <. M ,  c >. } ) `  M
)  /  v ]. [. a  /  u ]. ps 
<-> 
[. ( ( a  u.  { <. M , 
c >. } ) `  M )  /  v ]. [. ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  /  u ]. ps ) )
2518, 24bitrd 246 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  <->  [. ( ( a  u.  { <. M ,  c >. } ) `
 M )  / 
v ]. [. ( ( a  u.  { <. M ,  c >. } )  |`  ( 1 ... N
) )  /  u ]. ps ) )
2625biimpd 200 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  ->  [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
2726impr 604 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )  ->  [. ( ( a  u.  { <. M , 
c >. } ) `  M )  /  v ]. [. ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  /  u ]. ps )
2821adantrr 699 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )  ->  a  =  ( ( a  u.  { <. M ,  c >. } )  |`  (
1 ... N ) ) )
29 fveq1 5730 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  (
b `  M )  =  ( ( a  u.  { <. M , 
c >. } ) `  M ) )
30 dfsbcq 3165 . . . . . . . . . . . . . . . 16  |-  ( ( b `  M )  =  ( ( a  u.  { <. M , 
c >. } ) `  M )  ->  ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
3129, 30syl 16 . . . . . . . . . . . . . . 15  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
32 reseq1 5143 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  (
b  |`  ( 1 ... N ) )  =  ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) ) )
33 dfsbcq 3165 . . . . . . . . . . . . . . . . 17  |-  ( ( b  |`  ( 1 ... N ) )  =  ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  ->  ( [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
3432, 33syl 16 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  ( [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
3534sbcbidv 3217 . . . . . . . . . . . . . . 15  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  ( [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
3631, 35bitrd 246 . . . . . . . . . . . . . 14  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
3732eqeq2d 2449 . . . . . . . . . . . . . 14  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  a  =  ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) ) ) )
3836, 37anbi12d 693 . . . . . . . . . . . . 13  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  (
( [. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( [. (
( a  u.  { <. M ,  c >. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps  /\  a  =  ( ( a  u.  { <. M ,  c >. } )  |`  ( 1 ... N
) ) ) ) )
3938rspcev 3054 . . . . . . . . . . . 12  |-  ( ( ( a  u.  { <. M ,  c >. } )  e.  ( NN0  ^m  ( 1 ... M ) )  /\  ( [. (
( a  u.  { <. M ,  c >. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps  /\  a  =  ( ( a  u.  { <. M ,  c >. } )  |`  ( 1 ... N
) ) ) )  ->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
4013, 27, 28, 39syl12anc 1183 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )  ->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
4140ex 425 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  c  e.  NN0 )  -> 
( ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps )  ->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) (
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
4241rexlimdva 2832 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( E. c  e.  NN0  (
a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  [. c  /  v ]. [. a  /  u ]. ps )  ->  E. b  e.  ( NN0  ^m  (
1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
43 elmapi 7041 . . . . . . . . . . . . . 14  |-  ( b  e.  ( NN0  ^m  ( 1 ... M
) )  ->  b : ( 1 ... M ) --> NN0 )
44 nn0p1nn 10264 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
4510, 44syl5eqel 2522 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  M  e.  NN )
46 elfz1end 11086 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  <->  M  e.  ( 1 ... M
) )
4745, 46sylib 190 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  M  e.  ( 1 ... M
) )
48 ffvelrn 5871 . . . . . . . . . . . . . 14  |-  ( ( b : ( 1 ... M ) --> NN0 
/\  M  e.  ( 1 ... M ) )  ->  ( b `  M )  e.  NN0 )
4943, 47, 48syl2anr 466 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  b  e.  ( NN0  ^m  ( 1 ... M
) ) )  -> 
( b `  M
)  e.  NN0 )
5049adantr 453 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  ( b `  M )  e.  NN0 )
51 simprr 735 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  a  =  ( b  |`  ( 1 ... N ) ) )
5210mapfzcons1cl 26788 . . . . . . . . . . . . . 14  |-  ( b  e.  ( NN0  ^m  ( 1 ... M
) )  ->  (
b  |`  ( 1 ... N ) )  e.  ( NN0  ^m  (
1 ... N ) ) )
5352ad2antlr 709 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  ( b  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) )
5451, 53eqeltrd 2512 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  a  e.  ( NN0  ^m  ( 1 ... N ) ) )
55 simprl 734 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  [. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps )
56 dfsbcq 3165 . . . . . . . . . . . . . . 15  |-  ( a  =  ( b  |`  ( 1 ... N
) )  ->  ( [. a  /  u ]. ps  <->  [. ( b  |`  ( 1 ... N
) )  /  u ]. ps ) )
5756sbcbidv 3217 . . . . . . . . . . . . . 14  |-  ( a  =  ( b  |`  ( 1 ... N
) )  ->  ( [. ( b `  M
)  /  v ]. [. a  /  u ]. ps 
<-> 
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps ) )
5857ad2antll 711 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  ( [. (
b `  M )  /  v ]. [. a  /  u ]. ps  <->  [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps ) )
5955, 58mpbird 225 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  [. ( b `  M )  /  v ]. [. a  /  u ]. ps )
60 dfsbcq 3165 . . . . . . . . . . . . . 14  |-  ( c  =  ( b `  M )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  <->  [. ( b `  M )  /  v ]. [. a  /  u ]. ps ) )
6160anbi2d 686 . . . . . . . . . . . . 13  |-  ( c  =  ( b `  M )  ->  (
( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps )  <->  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  [. ( b `
 M )  / 
v ]. [. a  /  u ]. ps ) ) )
6261rspcev 3054 . . . . . . . . . . . 12  |-  ( ( ( b `  M
)  e.  NN0  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. ( b `
 M )  / 
v ]. [. a  /  u ]. ps ) )  ->  E. c  e.  NN0  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )
6350, 54, 59, 62syl12anc 1183 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  E. c  e.  NN0  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )
6463ex 425 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  b  e.  ( NN0  ^m  ( 1 ... M
) ) )  -> 
( ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) )  ->  E. c  e.  NN0  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) ) )
6564rexlimdva 2832 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( E. b  e.  ( NN0 
^m  ( 1 ... M ) ) (
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) )  ->  E. c  e.  NN0  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) ) )
6642, 65impbid 185 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( E. c  e.  NN0  (
a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  [. c  /  v ]. [. a  /  u ]. ps )  <->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
676, 66syl5bb 250 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )  <->  E. b  e.  ( NN0 
^m  ( 1 ... M ) ) (
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
6867abbidv 2552 . . . . . 6  |-  ( N  e.  NN0  ->  { a  |  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. b  e. 
NN0  [. b  /  v ]. [. a  /  u ]. ps ) }  =  { a  |  E. b  e.  ( NN0  ^m  ( 1 ... M
) ) ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) } )
691, 68syl5eq 2482 . . . . 5  |-  ( N  e.  NN0  ->  { a  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps }  =  { a  |  E. b  e.  ( NN0  ^m  ( 1 ... M
) ) ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) } )
70 nfcv 2574 . . . . . 6  |-  F/_ u
( NN0  ^m  (
1 ... N ) )
71 nfcv 2574 . . . . . 6  |-  F/_ a
( NN0  ^m  (
1 ... N ) )
72 nfv 1630 . . . . . 6  |-  F/ a E. v  e.  NN0  ps
73 nfcv 2574 . . . . . . 7  |-  F/_ u NN0
74 nfcv 2574 . . . . . . . 8  |-  F/_ u
b
75 nfsbc1v 3182 . . . . . . . 8  |-  F/ u [. a  /  u ]. ps
7674, 75nfsbc 3184 . . . . . . 7  |-  F/ u [. b  /  v ]. [. a  /  u ]. ps
7773, 76nfrex 2763 . . . . . 6  |-  F/ u E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps
78 sbceq1a 3173 . . . . . . . 8  |-  ( u  =  a  ->  ( ps 
<-> 
[. a  /  u ]. ps ) )
7978rexbidv 2728 . . . . . . 7  |-  ( u  =  a  ->  ( E. v  e.  NN0  ps  <->  E. v  e.  NN0  [. a  /  u ]. ps )
)
80 nfv 1630 . . . . . . . 8  |-  F/ b
[. a  /  u ]. ps
81 nfsbc1v 3182 . . . . . . . 8  |-  F/ v
[. b  /  v ]. [. a  /  u ]. ps
82 sbceq1a 3173 . . . . . . . 8  |-  ( v  =  b  ->  ( [. a  /  u ]. ps  <->  [. b  /  v ]. [. a  /  u ]. ps ) )
8380, 81, 82cbvrex 2931 . . . . . . 7  |-  ( E. v  e.  NN0  [. a  /  u ]. ps  <->  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )
8479, 83syl6bb 254 . . . . . 6  |-  ( u  =  a  ->  ( E. v  e.  NN0  ps  <->  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )
)
8570, 71, 72, 77, 84cbvrab 2956 . . . . 5  |-  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  ps }  =  {
a  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps }
86 fveq1 5730 . . . . . . . . 9  |-  ( t  =  b  ->  (
t `  M )  =  ( b `  M ) )
87 dfsbcq 3165 . . . . . . . . 9  |-  ( ( t `  M )  =  ( b `  M )  ->  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps ) )
8886, 87syl 16 . . . . . . . 8  |-  ( t  =  b  ->  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps ) )
89 reseq1 5143 . . . . . . . . . 10  |-  ( t  =  b  ->  (
t  |`  ( 1 ... N ) )  =  ( b  |`  (
1 ... N ) ) )
90 dfsbcq 3165 . . . . . . . . . 10  |-  ( ( t  |`  ( 1 ... N ) )  =  ( b  |`  ( 1 ... N
) )  ->  ( [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
9189, 90syl 16 . . . . . . . . 9  |-  ( t  =  b  ->  ( [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
9291sbcbidv 3217 . . . . . . . 8  |-  ( t  =  b  ->  ( [. ( b `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
9388, 92bitrd 246 . . . . . . 7  |-  ( t  =  b  ->  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
9493rexrab 3100 . . . . . 6  |-  ( E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M
) )  |  [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps } a  =  ( b  |`  ( 1 ... N ) )  <->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) (
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
9594abbii 2550 . . . . 5  |-  { a  |  E. b  e. 
{ t  e.  ( NN0  ^m  ( 1 ... M ) )  |  [. ( t `
 M )  / 
v ]. [. ( t  |`  ( 1 ... N
) )  /  u ]. ps } a  =  ( b  |`  (
1 ... N ) ) }  =  { a  |  E. b  e.  ( NN0  ^m  (
1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) }
9669, 85, 953eqtr4g 2495 . . . 4  |-  ( N  e.  NN0  ->  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  ps }  =  {
a  |  E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M ) )  |  [. ( t `
 M )  / 
v ]. [. ( t  |`  ( 1 ... N
) )  /  u ]. ps } a  =  ( b  |`  (
1 ... N ) ) } )
97 fvex 5745 . . . . . . . . 9  |-  ( t `
 M )  e. 
_V
98 vex 2961 . . . . . . . . . 10  |-  t  e. 
_V
9998resex 5189 . . . . . . . . 9  |-  ( t  |`  ( 1 ... N
) )  e.  _V
100 rexrabdioph.2 . . . . . . . . . 10  |-  ( v  =  ( t `  M )  ->  ( ps 
<->  ch ) )
101 rexrabdioph.3 . . . . . . . . . 10  |-  ( u  =  ( t  |`  ( 1 ... N
) )  ->  ( ch 
<-> 
ph ) )
102100, 101sylan9bb 682 . . . . . . . . 9  |-  ( ( v  =  ( t `
 M )  /\  u  =  ( t  |`  ( 1 ... N
) ) )  -> 
( ps  <->  ph ) )
10397, 99, 102sbc2ie 3230 . . . . . . . 8  |-  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  ph )
104103a1i 11 . . . . . . 7  |-  ( t  e.  ( NN0  ^m  ( 1 ... M
) )  ->  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  ph ) )
105104rabbiia 2948 . . . . . 6  |-  { t  e.  ( NN0  ^m  ( 1 ... M
) )  |  [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps }  =  { t  e.  ( NN0  ^m  (
1 ... M ) )  |  ph }
106105rexeqi 2911 . . . . 5  |-  ( E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M
) )  |  [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps } a  =  ( b  |`  ( 1 ... N ) )  <->  E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M
) )  |  ph } a  =  ( b  |`  ( 1 ... N ) ) )
107106abbii 2550 . . . 4  |-  { a  |  E. b  e. 
{ t  e.  ( NN0  ^m  ( 1 ... M ) )  |  [. ( t `
 M )  / 
v ]. [. ( t  |`  ( 1 ... N
) )  /  u ]. ps } a  =  ( b  |`  (
1 ... N ) ) }  =  { a  |  E. b  e. 
{ t  e.  ( NN0  ^m  ( 1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) }
10896, 107syl6eq 2486 . . 3  |-  ( N  e.  NN0  ->  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  ps }  =  {
a  |  E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) } )
109108adantr 453 . 2  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ps }  =  { a  |  E. b  e. 
{ t  e.  ( NN0  ^m  ( 1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) } )
110 simpl 445 . . 3  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  N  e.  NN0 )
111 nn0z 10309 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
112 uzid 10505 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
113 peano2uz 10535 . . . . . 6  |-  ( N  e.  ( ZZ>= `  N
)  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
114111, 112, 1133syl 19 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
11510, 114syl5eqel 2522 . . . 4  |-  ( N  e.  NN0  ->  M  e.  ( ZZ>= `  N )
)
116115adantr 453 . . 3  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  M  e.  ( ZZ>= `  N ) )
117 simpr 449 . . 3  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... M ) )  |  ph }  e.  (Dioph `  M ) )
118 diophrex 26848 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  {
t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { a  |  E. b  e.  { t  e.  ( NN0  ^m  (
1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
119110, 116, 117, 118syl3anc 1185 . 2  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { a  |  E. b  e.  { t  e.  ( NN0  ^m  (
1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
120109, 119eqeltrd 2512 1  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ps }  e.  (Dioph `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   {cab 2424   E.wrex 2708   {crab 2711   [.wsbc 3163    u. cun 3320   {csn 3816   <.cop 3819    |` cres 4883   -->wf 5453   ` cfv 5457  (class class class)co 6084    ^m cmap 7021   1c1 8996    + caddc 8998   NNcn 10005   NN0cn0 10226   ZZcz 10287   ZZ>=cuz 10493   ...cfz 11048  Diophcdioph 26827
This theorem is referenced by:  rexfrabdioph  26869  elnn0rabdioph  26877  dvdsrabdioph  26884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494  df-fz 11049  df-hash 11624  df-mzpcl 26794  df-mzp 26795  df-dioph 26828
  Copyright terms: Public domain W3C validator