MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rext Unicode version

Theorem rext 4238
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
Assertion
Ref Expression
rext  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  x  =  y )
Distinct variable group:    x, y, z

Proof of Theorem rext
StepHypRef Expression
1 vex 2804 . . . 4  |-  x  e. 
_V
21snid 3680 . . 3  |-  x  e. 
{ x }
3 snex 4232 . . . 4  |-  { x }  e.  _V
4 eleq2 2357 . . . . 5  |-  ( z  =  { x }  ->  ( x  e.  z  <-> 
x  e.  { x } ) )
5 eleq2 2357 . . . . 5  |-  ( z  =  { x }  ->  ( y  e.  z  <-> 
y  e.  { x } ) )
64, 5imbi12d 311 . . . 4  |-  ( z  =  { x }  ->  ( ( x  e.  z  ->  y  e.  z )  <->  ( x  e.  { x }  ->  y  e.  { x }
) ) )
73, 6spcv 2887 . . 3  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  (
x  e.  { x }  ->  y  e.  {
x } ) )
82, 7mpi 16 . 2  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  y  e.  { x } )
9 elsn 3668 . . 3  |-  ( y  e.  { x }  <->  y  =  x )
10 equcomi 1664 . . 3  |-  ( y  =  x  ->  x  =  y )
119, 10sylbi 187 . 2  |-  ( y  e.  { x }  ->  x  =  y )
128, 11syl 15 1  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530    = wceq 1632    e. wcel 1696   {csn 3653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-v 2803  df-dif 3168  df-un 3170  df-nul 3469  df-sn 3659  df-pr 3660
  Copyright terms: Public domain W3C validator