HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz3i Unicode version

Theorem riesz3i 22642
Description: A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1  |-  T  e. 
LinFn
nlelch.2  |-  T  e. 
ConFn
Assertion
Ref Expression
riesz3i  |-  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w )
Distinct variable group:    w, v, T

Proof of Theorem riesz3i
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 21583 . . 3  |-  0h  e.  ~H
2 nlelch.1 . . . . . . 7  |-  T  e. 
LinFn
32lnfnfi 22621 . . . . . 6  |-  T : ~H
--> CC
4 fveq2 5525 . . . . . . . . 9  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  ( _|_ `  ( _|_ `  ( null `  T ) ) )  =  ( _|_ `  0H ) )
5 nlelch.2 . . . . . . . . . . 11  |-  T  e. 
ConFn
62, 5nlelchi 22641 . . . . . . . . . 10  |-  ( null `  T )  e.  CH
76ococi 21984 . . . . . . . . 9  |-  ( _|_ `  ( _|_ `  ( null `  T ) ) )  =  ( null `  T )
8 choc0 21905 . . . . . . . . 9  |-  ( _|_ `  0H )  =  ~H
94, 7, 83eqtr3g 2338 . . . . . . . 8  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  ( null `  T )  =  ~H )
109eleq2d 2350 . . . . . . 7  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  ( v  e.  ( null `  T
)  <->  v  e.  ~H ) )
1110biimpar 471 . . . . . 6  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  v  e.  ( null `  T
) )
12 elnlfn2 22509 . . . . . 6  |-  ( ( T : ~H --> CC  /\  v  e.  ( null `  T ) )  -> 
( T `  v
)  =  0 )
133, 11, 12sylancr 644 . . . . 5  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  ( T `  v )  =  0 )
14 hi02 21676 . . . . . 6  |-  ( v  e.  ~H  ->  (
v  .ih  0h )  =  0 )
1514adantl 452 . . . . 5  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  (
v  .ih  0h )  =  0 )
1613, 15eqtr4d 2318 . . . 4  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  ( T `  v )  =  ( v  .ih  0h ) )
1716ralrimiva 2626 . . 3  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  0h )
)
18 oveq2 5866 . . . . . 6  |-  ( w  =  0h  ->  (
v  .ih  w )  =  ( v  .ih  0h ) )
1918eqeq2d 2294 . . . . 5  |-  ( w  =  0h  ->  (
( T `  v
)  =  ( v 
.ih  w )  <->  ( T `  v )  =  ( v  .ih  0h )
) )
2019ralbidv 2563 . . . 4  |-  ( w  =  0h  ->  ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  <->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  0h )
) )
2120rspcev 2884 . . 3  |-  ( ( 0h  e.  ~H  /\  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  0h ) )  ->  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w ) )
221, 17, 21sylancr 644 . 2  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w ) )
236choccli 21886 . . . 4  |-  ( _|_ `  ( null `  T
) )  e.  CH
2423chne0i 22032 . . 3  |-  ( ( _|_ `  ( null `  T ) )  =/= 
0H 
<->  E. u  e.  ( _|_ `  ( null `  T ) ) u  =/=  0h )
2523cheli 21812 . . . . 5  |-  ( u  e.  ( _|_ `  ( null `  T ) )  ->  u  e.  ~H )
263ffvelrni 5664 . . . . . . . . . . . 12  |-  ( u  e.  ~H  ->  ( T `  u )  e.  CC )
2726adantr 451 . . . . . . . . . . 11  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( T `  u
)  e.  CC )
28 hicl 21659 . . . . . . . . . . . . 13  |-  ( ( u  e.  ~H  /\  u  e.  ~H )  ->  ( u  .ih  u
)  e.  CC )
2928anidms 626 . . . . . . . . . . . 12  |-  ( u  e.  ~H  ->  (
u  .ih  u )  e.  CC )
3029adantr 451 . . . . . . . . . . 11  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( u  .ih  u
)  e.  CC )
31 his6 21678 . . . . . . . . . . . . 13  |-  ( u  e.  ~H  ->  (
( u  .ih  u
)  =  0  <->  u  =  0h ) )
3231necon3bid 2481 . . . . . . . . . . . 12  |-  ( u  e.  ~H  ->  (
( u  .ih  u
)  =/=  0  <->  u  =/=  0h ) )
3332biimpar 471 . . . . . . . . . . 11  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( u  .ih  u
)  =/=  0 )
3427, 30, 33divcld 9536 . . . . . . . . . 10  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( ( T `  u )  /  (
u  .ih  u )
)  e.  CC )
3534cjcld 11681 . . . . . . . . 9  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( * `  (
( T `  u
)  /  ( u 
.ih  u ) ) )  e.  CC )
36 simpl 443 . . . . . . . . 9  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  ->  u  e.  ~H )
37 hvmulcl 21593 . . . . . . . . 9  |-  ( ( ( * `  (
( T `  u
)  /  ( u 
.ih  u ) ) )  e.  CC  /\  u  e.  ~H )  ->  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H )
3835, 36, 37syl2anc 642 . . . . . . . 8  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H )
3938adantll 694 . . . . . . 7  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  ->  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H )
40 hvmulcl 21593 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  u
)  e.  CC  /\  v  e.  ~H )  ->  ( ( T `  u )  .h  v
)  e.  ~H )
4126, 40sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  u )  .h  v
)  e.  ~H )
423ffvelrni 5664 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  ~H  ->  ( T `  v )  e.  CC )
43 hvmulcl 21593 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( ( T `  v )  .h  u
)  e.  ~H )
4442, 43sylan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  ~H  /\  u  e.  ~H )  ->  ( ( T `  v )  .h  u
)  e.  ~H )
4544ancoms 439 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  v )  .h  u
)  e.  ~H )
46 simpl 443 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  u  e.  ~H )
47 his2sub 21671 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T `  u )  .h  v
)  e.  ~H  /\  ( ( T `  v )  .h  u
)  e.  ~H  /\  u  e.  ~H )  ->  ( ( ( ( T `  u )  .h  v )  -h  ( ( T `  v )  .h  u
) )  .ih  u
)  =  ( ( ( ( T `  u )  .h  v
)  .ih  u )  -  ( ( ( T `  v )  .h  u )  .ih  u ) ) )
4841, 45, 46, 47syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( ( T `  u )  .h  v )  -h  ( ( T `  v )  .h  u
) )  .ih  u
)  =  ( ( ( ( T `  u )  .h  v
)  .ih  u )  -  ( ( ( T `  v )  .h  u )  .ih  u ) ) )
4926adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  u
)  e.  CC )
50 simpr 447 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  v  e.  ~H )
51 ax-his3 21663 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  u
)  e.  CC  /\  v  e.  ~H  /\  u  e.  ~H )  ->  (
( ( T `  u )  .h  v
)  .ih  u )  =  ( ( T `
 u )  x.  ( v  .ih  u
) ) )
5249, 50, 46, 51syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  .ih  u
)  =  ( ( T `  u )  x.  ( v  .ih  u ) ) )
5342adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  v
)  e.  CC )
54 ax-his3 21663 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H  /\  u  e.  ~H )  ->  (
( ( T `  v )  .h  u
)  .ih  u )  =  ( ( T `
 v )  x.  ( u  .ih  u
) ) )
5553, 46, 46, 54syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 v )  .h  u )  .ih  u
)  =  ( ( T `  v )  x.  ( u  .ih  u ) ) )
5652, 55oveq12d 5876 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( ( T `  u )  .h  v )  .ih  u )  -  (
( ( T `  v )  .h  u
)  .ih  u )
)  =  ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  -  ( ( T `
 v )  x.  ( u  .ih  u
) ) ) )
5748, 56eqtr2d 2316 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  x.  ( v  .ih  u
) )  -  (
( T `  v
)  x.  ( u 
.ih  u ) ) )  =  ( ( ( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) 
.ih  u ) )
5857adantll 694 . . . . . . . . . . . . 13  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  -  ( ( T `  v )  x.  (
u  .ih  u )
) )  =  ( ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  .ih  u ) )
59 hvsubcl 21597 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( T `  u )  .h  v
)  e.  ~H  /\  ( ( T `  v )  .h  u
)  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ~H )
6041, 45, 59syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ~H )
612lnfnsubi 22626 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( T `  u )  .h  v
)  e.  ~H  /\  ( ( T `  v )  .h  u
)  e.  ~H )  ->  ( T `  (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) )  =  ( ( T `  ( ( T `  u )  .h  v ) )  -  ( T `  ( ( T `  v )  .h  u
) ) ) )
6241, 45, 61syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) )  =  ( ( T `  ( ( T `  u )  .h  v ) )  -  ( T `  ( ( T `  v )  .h  u
) ) ) )
632lnfnmuli 22624 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( T `  u
)  e.  CC  /\  v  e.  ~H )  ->  ( T `  (
( T `  u
)  .h  v ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
6426, 63sylan 457 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( T `  u
)  .h  v ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
652lnfnmuli 22624 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  v )  x.  ( T `  u ) ) )
66 mulcom 8823 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( T `  v
)  e.  CC  /\  ( T `  u )  e.  CC )  -> 
( ( T `  v )  x.  ( T `  u )
)  =  ( ( T `  u )  x.  ( T `  v ) ) )
6726, 66sylan2 460 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( ( T `  v )  x.  ( T `  u )
)  =  ( ( T `  u )  x.  ( T `  v ) ) )
6865, 67eqtrd 2315 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
6942, 68sylan 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  e.  ~H  /\  u  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
7069ancoms 439 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
7164, 70oveq12d 5876 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  ( ( T `  u )  .h  v
) )  -  ( T `  ( ( T `  v )  .h  u ) ) )  =  ( ( ( T `  u )  x.  ( T `  v ) )  -  ( ( T `  u )  x.  ( T `  v )
) ) )
72 mulcl 8821 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( T `  u
)  e.  CC  /\  ( T `  v )  e.  CC )  -> 
( ( T `  u )  x.  ( T `  v )
)  e.  CC )
7326, 42, 72syl2an 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  u )  x.  ( T `  v )
)  e.  CC )
7473subidd 9145 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  x.  ( T `  v
) )  -  (
( T `  u
)  x.  ( T `
 v ) ) )  =  0 )
7562, 71, 743eqtrd 2319 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) )  =  0 )
76 elnlfn 22508 . . . . . . . . . . . . . . . . . 18  |-  ( T : ~H --> CC  ->  ( ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ( null `  T )  <->  ( (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) )  e.  ~H  /\  ( T `  ( (
( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) ) )  =  0 ) ) )
773, 76ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) )  e.  ( null `  T
)  <->  ( ( ( ( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) )  e. 
~H  /\  ( T `  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) ) )  =  0 ) )
7860, 75, 77sylanbrc 645 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ( null `  T ) )
796chssii 21811 . . . . . . . . . . . . . . . . 17  |-  ( null `  T )  C_  ~H
80 ocorth 21870 . . . . . . . . . . . . . . . . 17  |-  ( (
null `  T )  C_ 
~H  ->  ( ( ( ( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) )  e.  ( null `  T
)  /\  u  e.  ( _|_ `  ( null `  T ) ) )  ->  ( ( ( ( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) )  .ih  u )  =  0 ) )
8179, 80ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ( null `  T )  /\  u  e.  ( _|_ `  ( null `  T ) ) )  ->  ( (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) 
.ih  u )  =  0 )
8278, 81sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( u  e.  ~H  /\  v  e.  ~H )  /\  u  e.  ( _|_ `  ( null `  T
) ) )  -> 
( ( ( ( T `  u )  .h  v )  -h  ( ( T `  v )  .h  u
) )  .ih  u
)  =  0 )
8382ancoms 439 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( _|_ `  ( null `  T
) )  /\  (
u  e.  ~H  /\  v  e.  ~H )
)  ->  ( (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) 
.ih  u )  =  0 )
8483anassrs 629 . . . . . . . . . . . . 13  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) )  .ih  u )  =  0 )
8558, 84eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  -  ( ( T `  v )  x.  (
u  .ih  u )
) )  =  0 )
86 hicl 21659 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  ~H  /\  u  e.  ~H )  ->  ( v  .ih  u
)  e.  CC )
8786ancoms 439 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( v  .ih  u
)  e.  CC )
8849, 87mulcld 8855 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  u )  x.  (
v  .ih  u )
)  e.  CC )
89 mulcl 8821 . . . . . . . . . . . . . . 15  |-  ( ( ( T `  v
)  e.  CC  /\  ( u  .ih  u )  e.  CC )  -> 
( ( T `  v )  x.  (
u  .ih  u )
)  e.  CC )
9042, 29, 89syl2anr 464 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  v )  x.  (
u  .ih  u )
)  e.  CC )
91 subeq0 9073 . . . . . . . . . . . . . 14  |-  ( ( ( ( T `  u )  x.  (
v  .ih  u )
)  e.  CC  /\  ( ( T `  v )  x.  (
u  .ih  u )
)  e.  CC )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  -  ( ( T `
 v )  x.  ( u  .ih  u
) ) )  =  0  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
9288, 90, 91syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( ( T `  u )  x.  ( v  .ih  u ) )  -  ( ( T `  v )  x.  (
u  .ih  u )
) )  =  0  <-> 
( ( T `  u )  x.  (
v  .ih  u )
)  =  ( ( T `  v )  x.  ( u  .ih  u ) ) ) )
9392adantll 694 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  -  ( ( T `
 v )  x.  ( u  .ih  u
) ) )  =  0  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
9485, 93mpbid 201 . . . . . . . . . . 11  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) )
9594adantlr 695 . . . . . . . . . 10  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) )
9688adantlr 695 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( T `
 u )  x.  ( v  .ih  u
) )  e.  CC )
9742adantl 452 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( T `  v )  e.  CC )
9830, 33jca 518 . . . . . . . . . . . . 13  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( ( u  .ih  u )  e.  CC  /\  ( u  .ih  u
)  =/=  0 ) )
9998adantr 451 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( u 
.ih  u )  e.  CC  /\  ( u 
.ih  u )  =/=  0 ) )
100 divmul3 9429 . . . . . . . . . . . 12  |-  ( ( ( ( T `  u )  x.  (
v  .ih  u )
)  e.  CC  /\  ( T `  v )  e.  CC  /\  (
( u  .ih  u
)  e.  CC  /\  ( u  .ih  u )  =/=  0 ) )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( T `  v
)  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
10196, 97, 99, 100syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( T `  v
)  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
102101adantlll 698 . . . . . . . . . 10  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( T `  v
)  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
10395, 102mpbird 223 . . . . . . . . 9  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( T `  v ) )
10427adantr 451 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( T `  u )  e.  CC )
10587adantlr 695 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( v  .ih  u )  e.  CC )
106 div23 9443 . . . . . . . . . . . 12  |-  ( ( ( T `  u
)  e.  CC  /\  ( v  .ih  u
)  e.  CC  /\  ( ( u  .ih  u )  e.  CC  /\  ( u  .ih  u
)  =/=  0 ) )  ->  ( (
( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( ( ( T `
 u )  / 
( u  .ih  u
) )  x.  (
v  .ih  u )
) )
107104, 105, 99, 106syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( ( ( T `  u )  /  (
u  .ih  u )
)  x.  ( v 
.ih  u ) ) )
10834adantr 451 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( T `
 u )  / 
( u  .ih  u
) )  e.  CC )
109 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  v  e.  ~H )
110 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  u  e.  ~H )
111 his52 21666 . . . . . . . . . . . 12  |-  ( ( ( ( T `  u )  /  (
u  .ih  u )
)  e.  CC  /\  v  e.  ~H  /\  u  e.  ~H )  ->  (
v  .ih  ( (
* `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) )  =  ( ( ( T `  u )  /  ( u  .ih  u ) )  x.  ( v  .ih  u
) ) )
112108, 109, 110, 111syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) )  =  ( ( ( T `  u )  /  (
u  .ih  u )
)  x.  ( v 
.ih  u ) ) )
113107, 112eqtr4d 2318 . . . . . . . . . 10  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) )
114113adantlll 698 . . . . . . . . 9  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) )
115103, 114eqtr3d 2317 . . . . . . . 8  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) )
116115ralrimiva 2626 . . . . . . 7  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  ->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) ) )
117 oveq2 5866 . . . . . . . . . 10  |-  ( w  =  ( ( * `
 ( ( T `
 u )  / 
( u  .ih  u
) ) )  .h  u )  ->  (
v  .ih  w )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) ) )
118117eqeq2d 2294 . . . . . . . . 9  |-  ( w  =  ( ( * `
 ( ( T `
 u )  / 
( u  .ih  u
) ) )  .h  u )  ->  (
( T `  v
)  =  ( v 
.ih  w )  <->  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) ) )
119118ralbidv 2563 . . . . . . . 8  |-  ( w  =  ( ( * `
 ( ( T `
 u )  / 
( u  .ih  u
) ) )  .h  u )  ->  ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  <->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) ) )
120119rspcev 2884 . . . . . . 7  |-  ( ( ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H  /\  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) ) )  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
12139, 116, 120syl2anc 642 . . . . . 6  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
122121ex 423 . . . . 5  |-  ( ( u  e.  ( _|_ `  ( null `  T
) )  /\  u  e.  ~H )  ->  (
u  =/=  0h  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) ) )
12325, 122mpdan 649 . . . 4  |-  ( u  e.  ( _|_ `  ( null `  T ) )  ->  ( u  =/= 
0h  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) ) )
124123rexlimiv 2661 . . 3  |-  ( E. u  e.  ( _|_ `  ( null `  T
) ) u  =/= 
0h  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
12524, 124sylbi 187 . 2  |-  ( ( _|_ `  ( null `  T ) )  =/= 
0H  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
12622, 125pm2.61ine 2522 1  |-  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737    x. cmul 8742    - cmin 9037    / cdiv 9423   *ccj 11581   ~Hchil 21499    .h csm 21501    .ih csp 21502   0hc0v 21504    -h cmv 21505   _|_cort 21510   0Hc0h 21515   nullcnl 21532   ConFnccnfn 21533   LinFnclf 21534
This theorem is referenced by:  riesz4i  22643  riesz1  22645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664  ax-hcompl 21781
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-cn 16957  df-cnp 16958  df-lm 16959  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cfil 18681  df-cau 18682  df-cmet 18683  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-subgo 20969  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156  df-ims 21157  df-dip 21274  df-ssp 21298  df-ph 21391  df-cbn 21442  df-hnorm 21548  df-hba 21549  df-hvsub 21551  df-hlim 21552  df-hcau 21553  df-sh 21786  df-ch 21801  df-oc 21831  df-ch0 21832  df-nlfn 22426  df-cnfn 22427  df-lnfn 22428
  Copyright terms: Public domain W3C validator