HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz3i Unicode version

Theorem riesz3i 22588
Description: A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1  |-  T  e. 
LinFn
nlelch.2  |-  T  e. 
ConFn
Assertion
Ref Expression
riesz3i  |-  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w )
Distinct variable group:    w, v, T

Proof of Theorem riesz3i
StepHypRef Expression
1 ax-hv0cl 21529 . . 3  |-  0h  e.  ~H
2 nlelch.1 . . . . . . 7  |-  T  e. 
LinFn
32lnfnfi 22567 . . . . . 6  |-  T : ~H
--> CC
4 fveq2 5444 . . . . . . . . 9  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  ( _|_ `  ( _|_ `  ( null `  T ) ) )  =  ( _|_ `  0H ) )
5 nlelch.2 . . . . . . . . . . 11  |-  T  e. 
ConFn
62, 5nlelchi 22587 . . . . . . . . . 10  |-  ( null `  T )  e.  CH
76ococi 21930 . . . . . . . . 9  |-  ( _|_ `  ( _|_ `  ( null `  T ) ) )  =  ( null `  T )
8 choc0 21851 . . . . . . . . 9  |-  ( _|_ `  0H )  =  ~H
94, 7, 83eqtr3g 2311 . . . . . . . 8  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  ( null `  T )  =  ~H )
109eleq2d 2323 . . . . . . 7  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  ( v  e.  ( null `  T
)  <->  v  e.  ~H ) )
1110biimpar 473 . . . . . 6  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  v  e.  ( null `  T
) )
12 elnlfn2 22455 . . . . . 6  |-  ( ( T : ~H --> CC  /\  v  e.  ( null `  T ) )  -> 
( T `  v
)  =  0 )
133, 11, 12sylancr 647 . . . . 5  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  ( T `  v )  =  0 )
14 hi02 21622 . . . . . 6  |-  ( v  e.  ~H  ->  (
v  .ih  0h )  =  0 )
1514adantl 454 . . . . 5  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  (
v  .ih  0h )  =  0 )
1613, 15eqtr4d 2291 . . . 4  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  ( T `  v )  =  ( v  .ih  0h ) )
1716ralrimiva 2599 . . 3  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  0h )
)
18 oveq2 5786 . . . . . 6  |-  ( w  =  0h  ->  (
v  .ih  w )  =  ( v  .ih  0h ) )
1918eqeq2d 2267 . . . . 5  |-  ( w  =  0h  ->  (
( T `  v
)  =  ( v 
.ih  w )  <->  ( T `  v )  =  ( v  .ih  0h )
) )
2019ralbidv 2536 . . . 4  |-  ( w  =  0h  ->  ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  <->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  0h )
) )
2120rcla4ev 2852 . . 3  |-  ( ( 0h  e.  ~H  /\  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  0h ) )  ->  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w ) )
221, 17, 21sylancr 647 . 2  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w ) )
236choccli 21832 . . . 4  |-  ( _|_ `  ( null `  T
) )  e.  CH
2423chne0i 21978 . . 3  |-  ( ( _|_ `  ( null `  T ) )  =/= 
0H 
<->  E. u  e.  ( _|_ `  ( null `  T ) ) u  =/=  0h )
2523cheli 21758 . . . . 5  |-  ( u  e.  ( _|_ `  ( null `  T ) )  ->  u  e.  ~H )
263ffvelrni 5584 . . . . . . . . . . . 12  |-  ( u  e.  ~H  ->  ( T `  u )  e.  CC )
2726adantr 453 . . . . . . . . . . 11  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( T `  u
)  e.  CC )
28 hicl 21605 . . . . . . . . . . . . 13  |-  ( ( u  e.  ~H  /\  u  e.  ~H )  ->  ( u  .ih  u
)  e.  CC )
2928anidms 629 . . . . . . . . . . . 12  |-  ( u  e.  ~H  ->  (
u  .ih  u )  e.  CC )
3029adantr 453 . . . . . . . . . . 11  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( u  .ih  u
)  e.  CC )
31 his6 21624 . . . . . . . . . . . . 13  |-  ( u  e.  ~H  ->  (
( u  .ih  u
)  =  0  <->  u  =  0h ) )
3231necon3bid 2454 . . . . . . . . . . . 12  |-  ( u  e.  ~H  ->  (
( u  .ih  u
)  =/=  0  <->  u  =/=  0h ) )
3332biimpar 473 . . . . . . . . . . 11  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( u  .ih  u
)  =/=  0 )
3427, 30, 33divcld 9490 . . . . . . . . . 10  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( ( T `  u )  /  (
u  .ih  u )
)  e.  CC )
3534cjcld 11632 . . . . . . . . 9  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( * `  (
( T `  u
)  /  ( u 
.ih  u ) ) )  e.  CC )
36 simpl 445 . . . . . . . . 9  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  ->  u  e.  ~H )
37 hvmulcl 21539 . . . . . . . . 9  |-  ( ( ( * `  (
( T `  u
)  /  ( u 
.ih  u ) ) )  e.  CC  /\  u  e.  ~H )  ->  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H )
3835, 36, 37syl2anc 645 . . . . . . . 8  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H )
3938adantll 697 . . . . . . 7  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  ->  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H )
40 hvmulcl 21539 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  u
)  e.  CC  /\  v  e.  ~H )  ->  ( ( T `  u )  .h  v
)  e.  ~H )
4126, 40sylan 459 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  u )  .h  v
)  e.  ~H )
423ffvelrni 5584 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  ~H  ->  ( T `  v )  e.  CC )
43 hvmulcl 21539 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( ( T `  v )  .h  u
)  e.  ~H )
4442, 43sylan 459 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  ~H  /\  u  e.  ~H )  ->  ( ( T `  v )  .h  u
)  e.  ~H )
4544ancoms 441 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  v )  .h  u
)  e.  ~H )
46 simpl 445 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  u  e.  ~H )
47 his2sub 21617 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T `  u )  .h  v
)  e.  ~H  /\  ( ( T `  v )  .h  u
)  e.  ~H  /\  u  e.  ~H )  ->  ( ( ( ( T `  u )  .h  v )  -h  ( ( T `  v )  .h  u
) )  .ih  u
)  =  ( ( ( ( T `  u )  .h  v
)  .ih  u )  -  ( ( ( T `  v )  .h  u )  .ih  u ) ) )
4841, 45, 46, 47syl3anc 1187 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( ( T `  u )  .h  v )  -h  ( ( T `  v )  .h  u
) )  .ih  u
)  =  ( ( ( ( T `  u )  .h  v
)  .ih  u )  -  ( ( ( T `  v )  .h  u )  .ih  u ) ) )
4926adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  u
)  e.  CC )
50 simpr 449 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  v  e.  ~H )
51 ax-his3 21609 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  u
)  e.  CC  /\  v  e.  ~H  /\  u  e.  ~H )  ->  (
( ( T `  u )  .h  v
)  .ih  u )  =  ( ( T `
 u )  x.  ( v  .ih  u
) ) )
5249, 50, 46, 51syl3anc 1187 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  .ih  u
)  =  ( ( T `  u )  x.  ( v  .ih  u ) ) )
5342adantl 454 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  v
)  e.  CC )
54 ax-his3 21609 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H  /\  u  e.  ~H )  ->  (
( ( T `  v )  .h  u
)  .ih  u )  =  ( ( T `
 v )  x.  ( u  .ih  u
) ) )
5553, 46, 46, 54syl3anc 1187 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 v )  .h  u )  .ih  u
)  =  ( ( T `  v )  x.  ( u  .ih  u ) ) )
5652, 55oveq12d 5796 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( ( T `  u )  .h  v )  .ih  u )  -  (
( ( T `  v )  .h  u
)  .ih  u )
)  =  ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  -  ( ( T `
 v )  x.  ( u  .ih  u
) ) ) )
5748, 56eqtr2d 2289 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  x.  ( v  .ih  u
) )  -  (
( T `  v
)  x.  ( u 
.ih  u ) ) )  =  ( ( ( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) 
.ih  u ) )
5857adantll 697 . . . . . . . . . . . . 13  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  -  ( ( T `  v )  x.  (
u  .ih  u )
) )  =  ( ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  .ih  u ) )
59 hvsubcl 21543 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( T `  u )  .h  v
)  e.  ~H  /\  ( ( T `  v )  .h  u
)  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ~H )
6041, 45, 59syl2anc 645 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ~H )
612lnfnsubi 22572 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( T `  u )  .h  v
)  e.  ~H  /\  ( ( T `  v )  .h  u
)  e.  ~H )  ->  ( T `  (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) )  =  ( ( T `  ( ( T `  u )  .h  v ) )  -  ( T `  ( ( T `  v )  .h  u
) ) ) )
6241, 45, 61syl2anc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) )  =  ( ( T `  ( ( T `  u )  .h  v ) )  -  ( T `  ( ( T `  v )  .h  u
) ) ) )
632lnfnmuli 22570 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( T `  u
)  e.  CC  /\  v  e.  ~H )  ->  ( T `  (
( T `  u
)  .h  v ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
6426, 63sylan 459 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( T `  u
)  .h  v ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
652lnfnmuli 22570 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  v )  x.  ( T `  u ) ) )
66 mulcom 8777 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( T `  v
)  e.  CC  /\  ( T `  u )  e.  CC )  -> 
( ( T `  v )  x.  ( T `  u )
)  =  ( ( T `  u )  x.  ( T `  v ) ) )
6726, 66sylan2 462 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( ( T `  v )  x.  ( T `  u )
)  =  ( ( T `  u )  x.  ( T `  v ) ) )
6865, 67eqtrd 2288 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
6942, 68sylan 459 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  e.  ~H  /\  u  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
7069ancoms 441 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
7164, 70oveq12d 5796 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  ( ( T `  u )  .h  v
) )  -  ( T `  ( ( T `  v )  .h  u ) ) )  =  ( ( ( T `  u )  x.  ( T `  v ) )  -  ( ( T `  u )  x.  ( T `  v )
) ) )
72 mulcl 8775 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( T `  u
)  e.  CC  /\  ( T `  v )  e.  CC )  -> 
( ( T `  u )  x.  ( T `  v )
)  e.  CC )
7326, 42, 72syl2an 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  u )  x.  ( T `  v )
)  e.  CC )
7473subidd 9099 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  x.  ( T `  v
) )  -  (
( T `  u
)  x.  ( T `
 v ) ) )  =  0 )
7562, 71, 743eqtrd 2292 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) )  =  0 )
76 elnlfn 22454 . . . . . . . . . . . . . . . . . 18  |-  ( T : ~H --> CC  ->  ( ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ( null `  T )  <->  ( (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) )  e.  ~H  /\  ( T `  ( (
( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) ) )  =  0 ) ) )
773, 76ax-mp 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) )  e.  ( null `  T
)  <->  ( ( ( ( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) )  e. 
~H  /\  ( T `  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) ) )  =  0 ) )
7860, 75, 77sylanbrc 648 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ( null `  T ) )
796chssii 21757 . . . . . . . . . . . . . . . . 17  |-  ( null `  T )  C_  ~H
80 ocorth 21816 . . . . . . . . . . . . . . . . 17  |-  ( (
null `  T )  C_ 
~H  ->  ( ( ( ( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) )  e.  ( null `  T
)  /\  u  e.  ( _|_ `  ( null `  T ) ) )  ->  ( ( ( ( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) )  .ih  u )  =  0 ) )
8179, 80ax-mp 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ( null `  T )  /\  u  e.  ( _|_ `  ( null `  T ) ) )  ->  ( (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) 
.ih  u )  =  0 )
8278, 81sylan 459 . . . . . . . . . . . . . . 15  |-  ( ( ( u  e.  ~H  /\  v  e.  ~H )  /\  u  e.  ( _|_ `  ( null `  T
) ) )  -> 
( ( ( ( T `  u )  .h  v )  -h  ( ( T `  v )  .h  u
) )  .ih  u
)  =  0 )
8382ancoms 441 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( _|_ `  ( null `  T
) )  /\  (
u  e.  ~H  /\  v  e.  ~H )
)  ->  ( (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) 
.ih  u )  =  0 )
8483anassrs 632 . . . . . . . . . . . . 13  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) )  .ih  u )  =  0 )
8558, 84eqtrd 2288 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  -  ( ( T `  v )  x.  (
u  .ih  u )
) )  =  0 )
86 hicl 21605 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  ~H  /\  u  e.  ~H )  ->  ( v  .ih  u
)  e.  CC )
8786ancoms 441 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( v  .ih  u
)  e.  CC )
8849, 87mulcld 8809 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  u )  x.  (
v  .ih  u )
)  e.  CC )
89 mulcl 8775 . . . . . . . . . . . . . . 15  |-  ( ( ( T `  v
)  e.  CC  /\  ( u  .ih  u )  e.  CC )  -> 
( ( T `  v )  x.  (
u  .ih  u )
)  e.  CC )
9042, 29, 89syl2anr 466 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  v )  x.  (
u  .ih  u )
)  e.  CC )
91 subeq0 9027 . . . . . . . . . . . . . 14  |-  ( ( ( ( T `  u )  x.  (
v  .ih  u )
)  e.  CC  /\  ( ( T `  v )  x.  (
u  .ih  u )
)  e.  CC )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  -  ( ( T `
 v )  x.  ( u  .ih  u
) ) )  =  0  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
9288, 90, 91syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( ( T `  u )  x.  ( v  .ih  u ) )  -  ( ( T `  v )  x.  (
u  .ih  u )
) )  =  0  <-> 
( ( T `  u )  x.  (
v  .ih  u )
)  =  ( ( T `  v )  x.  ( u  .ih  u ) ) ) )
9392adantll 697 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  -  ( ( T `
 v )  x.  ( u  .ih  u
) ) )  =  0  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
9485, 93mpbid 203 . . . . . . . . . . 11  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) )
9594adantlr 698 . . . . . . . . . 10  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) )
9688adantlr 698 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( T `
 u )  x.  ( v  .ih  u
) )  e.  CC )
9742adantl 454 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( T `  v )  e.  CC )
9830, 33jca 520 . . . . . . . . . . . . 13  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( ( u  .ih  u )  e.  CC  /\  ( u  .ih  u
)  =/=  0 ) )
9998adantr 453 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( u 
.ih  u )  e.  CC  /\  ( u 
.ih  u )  =/=  0 ) )
100 divmul3 9383 . . . . . . . . . . . 12  |-  ( ( ( ( T `  u )  x.  (
v  .ih  u )
)  e.  CC  /\  ( T `  v )  e.  CC  /\  (
( u  .ih  u
)  e.  CC  /\  ( u  .ih  u )  =/=  0 ) )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( T `  v
)  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
10196, 97, 99, 100syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( T `  v
)  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
102101adantlll 701 . . . . . . . . . 10  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( T `  v
)  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
10395, 102mpbird 225 . . . . . . . . 9  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( T `  v ) )
10427adantr 453 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( T `  u )  e.  CC )
10587adantlr 698 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( v  .ih  u )  e.  CC )
106 div23 9397 . . . . . . . . . . . 12  |-  ( ( ( T `  u
)  e.  CC  /\  ( v  .ih  u
)  e.  CC  /\  ( ( u  .ih  u )  e.  CC  /\  ( u  .ih  u
)  =/=  0 ) )  ->  ( (
( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( ( ( T `
 u )  / 
( u  .ih  u
) )  x.  (
v  .ih  u )
) )
107104, 105, 99, 106syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( ( ( T `  u )  /  (
u  .ih  u )
)  x.  ( v 
.ih  u ) ) )
10834adantr 453 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( T `
 u )  / 
( u  .ih  u
) )  e.  CC )
109 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  v  e.  ~H )
110 simpll 733 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  u  e.  ~H )
111 his52 21612 . . . . . . . . . . . 12  |-  ( ( ( ( T `  u )  /  (
u  .ih  u )
)  e.  CC  /\  v  e.  ~H  /\  u  e.  ~H )  ->  (
v  .ih  ( (
* `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) )  =  ( ( ( T `  u )  /  ( u  .ih  u ) )  x.  ( v  .ih  u
) ) )
112108, 109, 110, 111syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) )  =  ( ( ( T `  u )  /  (
u  .ih  u )
)  x.  ( v 
.ih  u ) ) )
113107, 112eqtr4d 2291 . . . . . . . . . 10  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) )
114113adantlll 701 . . . . . . . . 9  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) )
115103, 114eqtr3d 2290 . . . . . . . 8  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) )
116115ralrimiva 2599 . . . . . . 7  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  ->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) ) )
117 oveq2 5786 . . . . . . . . . 10  |-  ( w  =  ( ( * `
 ( ( T `
 u )  / 
( u  .ih  u
) ) )  .h  u )  ->  (
v  .ih  w )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) ) )
118117eqeq2d 2267 . . . . . . . . 9  |-  ( w  =  ( ( * `
 ( ( T `
 u )  / 
( u  .ih  u
) ) )  .h  u )  ->  (
( T `  v
)  =  ( v 
.ih  w )  <->  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) ) )
119118ralbidv 2536 . . . . . . . 8  |-  ( w  =  ( ( * `
 ( ( T `
 u )  / 
( u  .ih  u
) ) )  .h  u )  ->  ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  <->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) ) )
120119rcla4ev 2852 . . . . . . 7  |-  ( ( ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H  /\  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) ) )  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
12139, 116, 120syl2anc 645 . . . . . 6  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
122121ex 425 . . . . 5  |-  ( ( u  e.  ( _|_ `  ( null `  T
) )  /\  u  e.  ~H )  ->  (
u  =/=  0h  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) ) )
12325, 122mpdan 652 . . . 4  |-  ( u  e.  ( _|_ `  ( null `  T ) )  ->  ( u  =/= 
0h  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) ) )
124123rexlimiv 2634 . . 3  |-  ( E. u  e.  ( _|_ `  ( null `  T
) ) u  =/= 
0h  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
12524, 124sylbi 189 . 2  |-  ( ( _|_ `  ( null `  T ) )  =/= 
0H  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
12622, 125pm2.61ine 2495 1  |-  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517    C_ wss 3113   -->wf 4655   ` cfv 4659  (class class class)co 5778   CCcc 8689   0cc0 8691    x. cmul 8696    - cmin 8991    / cdiv 9377   *ccj 11532   ~Hchil 21445    .h csm 21447    .ih csp 21448   0hc0v 21450    -h cmv 21451   _|_cort 21456   0Hc0h 21461   nullcnl 21478   ConFnccnfn 21479   LinFnclf 21480
This theorem is referenced by:  riesz4i  22589  riesz1  22591
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-cc 8015  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769  ax-addf 8770  ax-mulf 8771  ax-hilex 21525  ax-hfvadd 21526  ax-hvcom 21527  ax-hvass 21528  ax-hv0cl 21529  ax-hvaddid 21530  ax-hfvmul 21531  ax-hvmulid 21532  ax-hvmulass 21533  ax-hvdistr1 21534  ax-hvdistr2 21535  ax-hvmul0 21536  ax-hfi 21604  ax-his1 21607  ax-his2 21608  ax-his3 21609  ax-his4 21610  ax-hcompl 21727
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-of 5998  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-omul 6438  df-er 6614  df-map 6728  df-pm 6729  df-ixp 6772  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-fi 7119  df-sup 7148  df-oi 7179  df-card 7526  df-acn 7529  df-cda 7748  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-4 9760  df-5 9761  df-6 9762  df-7 9763  df-8 9764  df-9 9765  df-10 9766  df-n0 9919  df-z 9978  df-dec 10078  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-ioo 10612  df-ico 10614  df-icc 10615  df-fz 10735  df-fzo 10823  df-fl 10877  df-seq 10999  df-exp 11057  df-hash 11290  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-clim 11913  df-rlim 11914  df-sum 12110  df-struct 13098  df-ndx 13099  df-slot 13100  df-base 13101  df-sets 13102  df-ress 13103  df-plusg 13169  df-mulr 13170  df-starv 13171  df-sca 13172  df-vsca 13173  df-tset 13175  df-ple 13176  df-ds 13178  df-hom 13180  df-cco 13181  df-rest 13275  df-topn 13276  df-topgen 13292  df-pt 13293  df-prds 13296  df-xrs 13351  df-0g 13352  df-gsum 13353  df-qtop 13358  df-imas 13359  df-xps 13361  df-mre 13436  df-mrc 13437  df-acs 13439  df-mnd 14315  df-submnd 14364  df-mulg 14440  df-cntz 14741  df-cmn 15039  df-xmet 16321  df-met 16322  df-bl 16323  df-mopn 16324  df-cnfld 16326  df-top 16584  df-bases 16586  df-topon 16587  df-topsp 16588  df-cld 16704  df-ntr 16705  df-cls 16706  df-nei 16783  df-cn 16905  df-cnp 16906  df-lm 16907  df-haus 16991  df-tx 17205  df-hmeo 17394  df-fbas 17468  df-fg 17469  df-fil 17489  df-fm 17581  df-flim 17582  df-flf 17583  df-xms 17833  df-ms 17834  df-tms 17835  df-cfil 18629  df-cau 18630  df-cmet 18631  df-grpo 20804  df-gid 20805  df-ginv 20806  df-gdiv 20807  df-ablo 20895  df-subgo 20915  df-vc 21048  df-nv 21094  df-va 21097  df-ba 21098  df-sm 21099  df-0v 21100  df-vs 21101  df-nmcv 21102  df-ims 21103  df-dip 21220  df-ssp 21244  df-ph 21337  df-cbn 21388  df-hnorm 21494  df-hba 21495  df-hvsub 21497  df-hlim 21498  df-hcau 21499  df-sh 21732  df-ch 21747  df-oc 21777  df-ch0 21778  df-nlfn 22372  df-cnfn 22373  df-lnfn 22374
  Copyright terms: Public domain W3C validator