HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz4i Structured version   Unicode version

Theorem riesz4i 23559
Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1  |-  T  e. 
LinFn
nlelch.2  |-  T  e. 
ConFn
Assertion
Ref Expression
riesz4i  |-  E! w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w )
Distinct variable group:    w, v, T

Proof of Theorem riesz4i
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 nlelch.1 . . 3  |-  T  e. 
LinFn
2 nlelch.2 . . 3  |-  T  e. 
ConFn
31, 2riesz3i 23558 . 2  |-  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w )
4 r19.26 2831 . . . . 5  |-  ( A. v  e.  ~H  (
( T `  v
)  =  ( v 
.ih  w )  /\  ( T `  v )  =  ( v  .ih  u ) )  <->  ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  /\  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  u ) ) )
5 oveq12 6083 . . . . . . . 8  |-  ( ( ( T `  v
)  =  ( v 
.ih  w )  /\  ( T `  v )  =  ( v  .ih  u ) )  -> 
( ( T `  v )  -  ( T `  v )
)  =  ( ( v  .ih  w )  -  ( v  .ih  u ) ) )
65adantl 453 . . . . . . 7  |-  ( ( v  e.  ~H  /\  ( ( T `  v )  =  ( v  .ih  w )  /\  ( T `  v )  =  ( v  .ih  u ) ) )  ->  (
( T `  v
)  -  ( T `
 v ) )  =  ( ( v 
.ih  w )  -  ( v  .ih  u
) ) )
71lnfnfi 23537 . . . . . . . . . 10  |-  T : ~H
--> CC
87ffvelrni 5862 . . . . . . . . 9  |-  ( v  e.  ~H  ->  ( T `  v )  e.  CC )
98subidd 9392 . . . . . . . 8  |-  ( v  e.  ~H  ->  (
( T `  v
)  -  ( T `
 v ) )  =  0 )
109adantr 452 . . . . . . 7  |-  ( ( v  e.  ~H  /\  ( ( T `  v )  =  ( v  .ih  w )  /\  ( T `  v )  =  ( v  .ih  u ) ) )  ->  (
( T `  v
)  -  ( T `
 v ) )  =  0 )
116, 10eqtr3d 2470 . . . . . 6  |-  ( ( v  e.  ~H  /\  ( ( T `  v )  =  ( v  .ih  w )  /\  ( T `  v )  =  ( v  .ih  u ) ) )  ->  (
( v  .ih  w
)  -  ( v 
.ih  u ) )  =  0 )
1211ralimiaa 2773 . . . . 5  |-  ( A. v  e.  ~H  (
( T `  v
)  =  ( v 
.ih  w )  /\  ( T `  v )  =  ( v  .ih  u ) )  ->  A. v  e.  ~H  ( ( v  .ih  w )  -  (
v  .ih  u )
)  =  0 )
134, 12sylbir 205 . . . 4  |-  ( ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  /\  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  u ) )  ->  A. v  e.  ~H  ( ( v  .ih  w )  -  (
v  .ih  u )
)  =  0 )
14 hvsubcl 22513 . . . . . 6  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  ( w  -h  u
)  e.  ~H )
15 oveq1 6081 . . . . . . . . 9  |-  ( v  =  ( w  -h  u )  ->  (
v  .ih  w )  =  ( ( w  -h  u )  .ih  w ) )
16 oveq1 6081 . . . . . . . . 9  |-  ( v  =  ( w  -h  u )  ->  (
v  .ih  u )  =  ( ( w  -h  u )  .ih  u ) )
1715, 16oveq12d 6092 . . . . . . . 8  |-  ( v  =  ( w  -h  u )  ->  (
( v  .ih  w
)  -  ( v 
.ih  u ) )  =  ( ( ( w  -h  u ) 
.ih  w )  -  ( ( w  -h  u )  .ih  u
) ) )
1817eqeq1d 2444 . . . . . . 7  |-  ( v  =  ( w  -h  u )  ->  (
( ( v  .ih  w )  -  (
v  .ih  u )
)  =  0  <->  (
( ( w  -h  u )  .ih  w
)  -  ( ( w  -h  u ) 
.ih  u ) )  =  0 ) )
1918rspcv 3041 . . . . . 6  |-  ( ( w  -h  u )  e.  ~H  ->  ( A. v  e.  ~H  ( ( v  .ih  w )  -  (
v  .ih  u )
)  =  0  -> 
( ( ( w  -h  u )  .ih  w )  -  (
( w  -h  u
)  .ih  u )
)  =  0 ) )
2014, 19syl 16 . . . . 5  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  ( A. v  e. 
~H  ( ( v 
.ih  w )  -  ( v  .ih  u
) )  =  0  ->  ( ( ( w  -h  u ) 
.ih  w )  -  ( ( w  -h  u )  .ih  u
) )  =  0 ) )
21 normcl 22620 . . . . . . . . . 10  |-  ( ( w  -h  u )  e.  ~H  ->  ( normh `  ( w  -h  u ) )  e.  RR )
2221recnd 9107 . . . . . . . . 9  |-  ( ( w  -h  u )  e.  ~H  ->  ( normh `  ( w  -h  u ) )  e.  CC )
23 sqeq0 11439 . . . . . . . . 9  |-  ( (
normh `  ( w  -h  u ) )  e.  CC  ->  ( (
( normh `  ( w  -h  u ) ) ^
2 )  =  0  <-> 
( normh `  ( w  -h  u ) )  =  0 ) )
2422, 23syl 16 . . . . . . . 8  |-  ( ( w  -h  u )  e.  ~H  ->  (
( ( normh `  (
w  -h  u ) ) ^ 2 )  =  0  <->  ( normh `  ( w  -h  u
) )  =  0 ) )
25 norm-i 22624 . . . . . . . 8  |-  ( ( w  -h  u )  e.  ~H  ->  (
( normh `  ( w  -h  u ) )  =  0  <->  ( w  -h  u )  =  0h ) )
2624, 25bitrd 245 . . . . . . 7  |-  ( ( w  -h  u )  e.  ~H  ->  (
( ( normh `  (
w  -h  u ) ) ^ 2 )  =  0  <->  ( w  -h  u )  =  0h ) )
2714, 26syl 16 . . . . . 6  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  ( ( ( normh `  ( w  -h  u
) ) ^ 2 )  =  0  <->  (
w  -h  u )  =  0h ) )
28 normsq 22629 . . . . . . . . 9  |-  ( ( w  -h  u )  e.  ~H  ->  (
( normh `  ( w  -h  u ) ) ^
2 )  =  ( ( w  -h  u
)  .ih  ( w  -h  u ) ) )
2914, 28syl 16 . . . . . . . 8  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  ( ( normh `  (
w  -h  u ) ) ^ 2 )  =  ( ( w  -h  u )  .ih  ( w  -h  u
) ) )
30 simpl 444 . . . . . . . . 9  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  w  e.  ~H )
31 simpr 448 . . . . . . . . 9  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  u  e.  ~H )
32 his2sub2 22588 . . . . . . . . 9  |-  ( ( ( w  -h  u
)  e.  ~H  /\  w  e.  ~H  /\  u  e.  ~H )  ->  (
( w  -h  u
)  .ih  ( w  -h  u ) )  =  ( ( ( w  -h  u )  .ih  w )  -  (
( w  -h  u
)  .ih  u )
) )
3314, 30, 31, 32syl3anc 1184 . . . . . . . 8  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  ( ( w  -h  u )  .ih  (
w  -h  u ) )  =  ( ( ( w  -h  u
)  .ih  w )  -  ( ( w  -h  u )  .ih  u ) ) )
3429, 33eqtrd 2468 . . . . . . 7  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  ( ( normh `  (
w  -h  u ) ) ^ 2 )  =  ( ( ( w  -h  u ) 
.ih  w )  -  ( ( w  -h  u )  .ih  u
) ) )
3534eqeq1d 2444 . . . . . 6  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  ( ( ( normh `  ( w  -h  u
) ) ^ 2 )  =  0  <->  (
( ( w  -h  u )  .ih  w
)  -  ( ( w  -h  u ) 
.ih  u ) )  =  0 ) )
36 hvsubeq0 22563 . . . . . 6  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  ( ( w  -h  u )  =  0h  <->  w  =  u ) )
3727, 35, 363bitr3d 275 . . . . 5  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  ( ( ( ( w  -h  u ) 
.ih  w )  -  ( ( w  -h  u )  .ih  u
) )  =  0  <-> 
w  =  u ) )
3820, 37sylibd 206 . . . 4  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  ( A. v  e. 
~H  ( ( v 
.ih  w )  -  ( v  .ih  u
) )  =  0  ->  w  =  u ) )
3913, 38syl5 30 . . 3  |-  ( ( w  e.  ~H  /\  u  e.  ~H )  ->  ( ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  /\  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  u ) )  ->  w  =  u ) )
4039rgen2a 2765 . 2  |-  A. w  e.  ~H  A. u  e. 
~H  ( ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  /\  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  u ) )  ->  w  =  u )
41 oveq2 6082 . . . . 5  |-  ( w  =  u  ->  (
v  .ih  w )  =  ( v  .ih  u ) )
4241eqeq2d 2447 . . . 4  |-  ( w  =  u  ->  (
( T `  v
)  =  ( v 
.ih  w )  <->  ( T `  v )  =  ( v  .ih  u ) ) )
4342ralbidv 2718 . . 3  |-  ( w  =  u  ->  ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  <->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  u ) ) )
4443reu4 3121 . 2  |-  ( E! w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  <->  ( E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  /\  A. w  e. 
~H  A. u  e.  ~H  ( ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  /\  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  u ) )  ->  w  =  u ) ) )
453, 40, 44mpbir2an 887 1  |-  E! w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2698   E.wrex 2699   E!wreu 2700   ` cfv 5447  (class class class)co 6074   CCcc 8981   0cc0 8983    - cmin 9284   2c2 10042   ^cexp 11375   ~Hchil 22415    .ih csp 22418   normhcno 22419   0hc0v 22420    -h cmv 22421   ConFnccnfn 22449   LinFnclf 22450
This theorem is referenced by:  riesz4  23560
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cc 8308  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061  ax-addf 9062  ax-mulf 9063  ax-hilex 22495  ax-hfvadd 22496  ax-hvcom 22497  ax-hvass 22498  ax-hv0cl 22499  ax-hvaddid 22500  ax-hfvmul 22501  ax-hvmulid 22502  ax-hvmulass 22503  ax-hvdistr1 22504  ax-hvdistr2 22505  ax-hvmul0 22506  ax-hfi 22574  ax-his1 22577  ax-his2 22578  ax-his3 22579  ax-his4 22580  ax-hcompl 22697
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-iin 4089  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-of 6298  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-2o 6718  df-oadd 6721  df-omul 6722  df-er 6898  df-map 7013  df-pm 7014  df-ixp 7057  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-fi 7409  df-sup 7439  df-oi 7472  df-card 7819  df-acn 7822  df-cda 8041  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-7 10056  df-8 10057  df-9 10058  df-10 10059  df-n0 10215  df-z 10276  df-dec 10376  df-uz 10482  df-q 10568  df-rp 10606  df-xneg 10703  df-xadd 10704  df-xmul 10705  df-ioo 10913  df-ico 10915  df-icc 10916  df-fz 11037  df-fzo 11129  df-fl 11195  df-seq 11317  df-exp 11376  df-hash 11612  df-cj 11897  df-re 11898  df-im 11899  df-sqr 12033  df-abs 12034  df-clim 12275  df-rlim 12276  df-sum 12473  df-struct 13464  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-mulr 13536  df-starv 13537  df-sca 13538  df-vsca 13539  df-tset 13541  df-ple 13542  df-ds 13544  df-unif 13545  df-hom 13546  df-cco 13547  df-rest 13643  df-topn 13644  df-topgen 13660  df-pt 13661  df-prds 13664  df-xrs 13719  df-0g 13720  df-gsum 13721  df-qtop 13726  df-imas 13727  df-xps 13729  df-mre 13804  df-mrc 13805  df-acs 13807  df-mnd 14683  df-submnd 14732  df-mulg 14808  df-cntz 15109  df-cmn 15407  df-psmet 16687  df-xmet 16688  df-met 16689  df-bl 16690  df-mopn 16691  df-fbas 16692  df-fg 16693  df-cnfld 16697  df-top 16956  df-bases 16958  df-topon 16959  df-topsp 16960  df-cld 17076  df-ntr 17077  df-cls 17078  df-nei 17155  df-cn 17284  df-cnp 17285  df-lm 17286  df-haus 17372  df-tx 17587  df-hmeo 17780  df-fil 17871  df-fm 17963  df-flim 17964  df-flf 17965  df-xms 18343  df-ms 18344  df-tms 18345  df-cfil 19201  df-cau 19202  df-cmet 19203  df-grpo 21772  df-gid 21773  df-ginv 21774  df-gdiv 21775  df-ablo 21863  df-subgo 21883  df-vc 22018  df-nv 22064  df-va 22067  df-ba 22068  df-sm 22069  df-0v 22070  df-vs 22071  df-nmcv 22072  df-ims 22073  df-dip 22190  df-ssp 22214  df-ph 22307  df-cbn 22358  df-hnorm 22464  df-hba 22465  df-hvsub 22467  df-hlim 22468  df-hcau 22469  df-sh 22702  df-ch 22717  df-oc 22747  df-ch0 22748  df-nlfn 23342  df-cnfn 23343  df-lnfn 23344
  Copyright terms: Public domain W3C validator