MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim Unicode version

Theorem rlim 11985
Description: Express the predicate: The limit of complex number function  F is  C, or  F converges to  C, in the real sense. This means that for any real  x, no matter how small, there always exists a number  y such that the absolute difference of any number in the function beyond  y and the limit is less than  x. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
rlim.1  |-  ( ph  ->  F : A --> CC )
rlim.2  |-  ( ph  ->  A  C_  RR )
rlim.4  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  =  B )
Assertion
Ref Expression
rlim  |-  ( ph  ->  ( F  ~~> r  C  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) ) )
Distinct variable groups:    z, A    x, y, z, C    x, F, y, z    ph, x, y, z
Allowed substitution hints:    A( x, y)    B( x, y, z)

Proof of Theorem rlim
Dummy variables  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimrel 11983 . . . . 5  |-  Rel  ~~> r
21brrelex2i 4746 . . . 4  |-  ( F  ~~> r  C  ->  C  e.  _V )
32a1i 10 . . 3  |-  ( ph  ->  ( F  ~~> r  C  ->  C  e.  _V )
)
4 elex 2809 . . . . 5  |-  ( C  e.  CC  ->  C  e.  _V )
54ad2antrl 708 . . . 4  |-  ( ( F  e.  ( CC 
^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )  ->  C  e.  _V )
65a1i 10 . . 3  |-  ( ph  ->  ( ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )  ->  C  e.  _V ) )
7 rlim.1 . . . . 5  |-  ( ph  ->  F : A --> CC )
8 rlim.2 . . . . 5  |-  ( ph  ->  A  C_  RR )
9 cnex 8834 . . . . . 6  |-  CC  e.  _V
10 reex 8844 . . . . . 6  |-  RR  e.  _V
11 elpm2r 6804 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  RR  e.  _V )  /\  ( F : A --> CC  /\  A  C_  RR ) )  ->  F  e.  ( CC  ^pm  RR ) )
129, 10, 11mpanl12 663 . . . . 5  |-  ( ( F : A --> CC  /\  A  C_  RR )  ->  F  e.  ( CC  ^pm 
RR ) )
137, 8, 12syl2anc 642 . . . 4  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
14 eleq1 2356 . . . . . . . . 9  |-  ( f  =  F  ->  (
f  e.  ( CC 
^pm  RR )  <->  F  e.  ( CC  ^pm  RR ) ) )
15 eleq1 2356 . . . . . . . . 9  |-  ( w  =  C  ->  (
w  e.  CC  <->  C  e.  CC ) )
1614, 15bi2anan9 843 . . . . . . . 8  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( f  e.  ( CC  ^pm  RR )  /\  w  e.  CC ) 
<->  ( F  e.  ( CC  ^pm  RR )  /\  C  e.  CC ) ) )
17 simpl 443 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  w  =  C )  ->  f  =  F )
1817dmeqd 4897 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  w  =  C )  ->  dom  f  =  dom  F )
19 fveq1 5540 . . . . . . . . . . . . . . 15  |-  ( f  =  F  ->  (
f `  z )  =  ( F `  z ) )
20 oveq12 5883 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  z
)  =  ( F `
 z )  /\  w  =  C )  ->  ( ( f `  z )  -  w
)  =  ( ( F `  z )  -  C ) )
2119, 20sylan 457 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( f `  z )  -  w
)  =  ( ( F `  z )  -  C ) )
2221fveq2d 5545 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  w  =  C )  ->  ( abs `  (
( f `  z
)  -  w ) )  =  ( abs `  ( ( F `  z )  -  C
) ) )
2322breq1d 4049 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( abs `  (
( f `  z
)  -  w ) )  <  x  <->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )
2423imbi2d 307 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( y  <_ 
z  ->  ( abs `  ( ( f `  z )  -  w
) )  <  x
)  <->  ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) )
2518, 24raleqbidv 2761 . . . . . . . . . 10  |-  ( ( f  =  F  /\  w  =  C )  ->  ( A. z  e. 
dom  f ( y  <_  z  ->  ( abs `  ( ( f `
 z )  -  w ) )  < 
x )  <->  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
2625rexbidv 2577 . . . . . . . . 9  |-  ( ( f  =  F  /\  w  =  C )  ->  ( E. y  e.  RR  A. z  e. 
dom  f ( y  <_  z  ->  ( abs `  ( ( f `
 z )  -  w ) )  < 
x )  <->  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
2726ralbidv 2576 . . . . . . . 8  |-  ( ( f  =  F  /\  w  =  C )  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  dom  f
( y  <_  z  ->  ( abs `  (
( f `  z
)  -  w ) )  <  x )  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
2816, 27anbi12d 691 . . . . . . 7  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( ( f  e.  ( CC  ^pm  RR )  /\  w  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  f ( y  <_  z  ->  ( abs `  ( ( f `
 z )  -  w ) )  < 
x ) )  <->  ( ( F  e.  ( CC  ^pm 
RR )  /\  C  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
29 df-rlim 11979 . . . . . . 7  |-  ~~> r  =  { <. f ,  w >.  |  ( ( f  e.  ( CC  ^pm  RR )  /\  w  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  f ( y  <_  z  ->  ( abs `  ( ( f `
 z )  -  w ) )  < 
x ) ) }
3028, 29brabga 4295 . . . . . 6  |-  ( ( F  e.  ( CC 
^pm  RR )  /\  C  e.  _V )  ->  ( F 
~~> r  C  <->  ( ( F  e.  ( CC  ^pm 
RR )  /\  C  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
31 anass 630 . . . . . 6  |-  ( ( ( F  e.  ( CC  ^pm  RR )  /\  C  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  C ) )  <  x ) )  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
3230, 31syl6bb 252 . . . . 5  |-  ( ( F  e.  ( CC 
^pm  RR )  /\  C  e.  _V )  ->  ( F 
~~> r  C  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) )
3332ex 423 . . . 4  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( C  e.  _V  ->  ( F  ~~> r  C  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) ) )
3413, 33syl 15 . . 3  |-  ( ph  ->  ( C  e.  _V  ->  ( F  ~~> r  C  <->  ( F  e.  ( CC 
^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) ) )
353, 6, 34pm5.21ndd 343 . 2  |-  ( ph  ->  ( F  ~~> r  C  <->  ( F  e.  ( CC 
^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) )
3613biantrurd 494 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) )  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) )
37 fdm 5409 . . . . . . . 8  |-  ( F : A --> CC  ->  dom 
F  =  A )
387, 37syl 15 . . . . . . 7  |-  ( ph  ->  dom  F  =  A )
3938raleqdv 2755 . . . . . 6  |-  ( ph  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x )  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) )
40 rlim.4 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  =  B )
4140oveq1d 5889 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  (
( F `  z
)  -  C )  =  ( B  -  C ) )
4241fveq2d 5545 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  ( abs `  ( ( F `
 z )  -  C ) )  =  ( abs `  ( B  -  C )
) )
4342breq1d 4049 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  (
( abs `  (
( F `  z
)  -  C ) )  <  x  <->  ( abs `  ( B  -  C
) )  <  x
) )
4443imbi2d 307 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  (
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  C ) )  <  x )  <-> 
( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
4544ralbidva 2572 . . . . . 6  |-  ( ph  ->  ( A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
)  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
4639, 45bitrd 244 . . . . 5  |-  ( ph  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x )  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4746rexbidv 2577 . . . 4  |-  ( ph  ->  ( E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x )  <->  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4847ralbidv 2576 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  C ) )  <  x )  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4948anbi2d 684 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) ) )
5035, 36, 493bitr2d 272 1  |-  ( ph  ->  ( F  ~~> r  C  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   class class class wbr 4039   dom cdm 4705   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   CCcc 8751   RRcr 8752    < clt 8883    <_ cle 8884    - cmin 9053   RR+crp 10370   abscabs 11735    ~~> r crli 11975
This theorem is referenced by:  rlim2  11986  rlimcl  11993  rlimclim  12036  rlimres  12048  caurcvgr  12162  faclimlem5  24121
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-pm 6791  df-rlim 11979
  Copyright terms: Public domain W3C validator