MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimadd Unicode version

Theorem rlimadd 12118
Description: Limit of the sum of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
rlimadd.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
rlimadd.5  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
rlimadd.6  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
Assertion
Ref Expression
rlimadd  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  ~~> r  ( D  +  E ) )
Distinct variable groups:    x, A    x, D    ph, x    x, E
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem rlimadd
Dummy variables  w  v  y  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 rlimadd.5 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
31, 2rlimmptrcl 12083 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4 rlimadd.4 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
5 rlimadd.6 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
64, 5rlimmptrcl 12083 . 2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
7 rlimcl 11979 . . 3  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  D  e.  CC )
82, 7syl 15 . 2  |-  ( ph  ->  D  e.  CC )
9 rlimcl 11979 . . 3  |-  ( ( x  e.  A  |->  C )  ~~> r  E  ->  E  e.  CC )
105, 9syl 15 . 2  |-  ( ph  ->  E  e.  CC )
11 ax-addf 8818 . . 3  |-  +  :
( CC  X.  CC )
--> CC
1211a1i 10 . 2  |-  ( ph  ->  +  : ( CC 
X.  CC ) --> CC )
13 simpr 447 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
148adantr 451 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  D  e.  CC )
1510adantr 451 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E  e.  CC )
16 addcn2 12069 . . 3  |-  ( ( y  e.  RR+  /\  D  e.  CC  /\  E  e.  CC )  ->  E. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  D ) )  <  z  /\  ( abs `  ( v  -  E ) )  <  w )  -> 
( abs `  (
( u  +  v )  -  ( D  +  E ) ) )  <  y ) )
1713, 14, 15, 16syl3anc 1182 . 2  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  D ) )  <  z  /\  ( abs `  ( v  -  E ) )  <  w )  -> 
( abs `  (
( u  +  v )  -  ( D  +  E ) ) )  <  y ) )
183, 6, 8, 10, 2, 5, 12, 17rlimcn2 12066 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  ~~> r  ( D  +  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1686   A.wral 2545   E.wrex 2546   class class class wbr 4025    e. cmpt 4079    X. cxp 4689   -->wf 5253   ` cfv 5257  (class class class)co 5860   CCcc 8737    + caddc 8742    < clt 8869    - cmin 9039   RR+crp 10356   abscabs 11721    ~~> r crli 11961
This theorem is referenced by:  caucvgr  12150  fsumrlim  12271  logfacrlim  20465  logexprlim  20466  chpchtlim  20630  selberglem2  20697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-sup 7196  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-seq 11049  df-exp 11107  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-rlim 11965
  Copyright terms: Public domain W3C validator