MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim Unicode version

Theorem rlimclim 12268
Description: A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim.1  |-  Z  =  ( ZZ>= `  M )
rlimclim.2  |-  ( ph  ->  M  e.  ZZ )
rlimclim.3  |-  ( ph  ->  F : Z --> CC )
Assertion
Ref Expression
rlimclim  |-  ( ph  ->  ( F  ~~> r  A  <->  F  ~~>  A ) )

Proof of Theorem rlimclim
Dummy variables  w  k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimclim.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 rlimclim.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
32adantr 452 . . 3  |-  ( (
ph  /\  F  ~~> r  A
)  ->  M  e.  ZZ )
4 simpr 448 . . 3  |-  ( (
ph  /\  F  ~~> r  A
)  ->  F  ~~> r  A
)
5 rlimclim.3 . . . . 5  |-  ( ph  ->  F : Z --> CC )
6 fdm 5536 . . . . 5  |-  ( F : Z --> CC  ->  dom 
F  =  Z )
7 eqimss2 3345 . . . . 5  |-  ( dom 
F  =  Z  ->  Z  C_  dom  F )
85, 6, 73syl 19 . . . 4  |-  ( ph  ->  Z  C_  dom  F )
98adantr 452 . . 3  |-  ( (
ph  /\  F  ~~> r  A
)  ->  Z  C_  dom  F )
101, 3, 4, 9rlimclim1 12267 . 2  |-  ( (
ph  /\  F  ~~> r  A
)  ->  F  ~~>  A )
11 climcl 12221 . . . 4  |-  ( F  ~~>  A  ->  A  e.  CC )
1211adantl 453 . . 3  |-  ( (
ph  /\  F  ~~>  A )  ->  A  e.  CC )
132ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  M  e.  ZZ )
14 simpr 448 . . . . . 6  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  y  e.  RR+ )
15 eqidd 2389 . . . . . 6  |-  ( ( ( ( ph  /\  F 
~~>  A )  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
16 simplr 732 . . . . . 6  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  F  ~~>  A )
171, 13, 14, 15, 16climi2 12233 . . . . 5  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  E. z  e.  Z  A. k  e.  ( ZZ>= `  z )
( abs `  (
( F `  k
)  -  A ) )  <  y )
18 uzssz 10438 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  M )  C_  ZZ
191, 18eqsstri 3322 . . . . . . . . . . . . 13  |-  Z  C_  ZZ
20 simplrl 737 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  -> 
z  e.  Z )
2119, 20sseldi 3290 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  -> 
z  e.  ZZ )
22 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  ->  w  e.  Z )
2319, 22sseldi 3290 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  ->  w  e.  ZZ )
24 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  -> 
z  <_  w )
25 eluz2 10427 . . . . . . . . . . . 12  |-  ( w  e.  ( ZZ>= `  z
)  <->  ( z  e.  ZZ  /\  w  e.  ZZ  /\  z  <_  w ) )
2621, 23, 24, 25syl3anbrc 1138 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  ->  w  e.  ( ZZ>= `  z ) )
27 simplrr 738 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  ->  A. k  e.  ( ZZ>=
`  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y )
28 fveq2 5669 . . . . . . . . . . . . . . 15  |-  ( k  =  w  ->  ( F `  k )  =  ( F `  w ) )
2928oveq1d 6036 . . . . . . . . . . . . . 14  |-  ( k  =  w  ->  (
( F `  k
)  -  A )  =  ( ( F `
 w )  -  A ) )
3029fveq2d 5673 . . . . . . . . . . . . 13  |-  ( k  =  w  ->  ( abs `  ( ( F `
 k )  -  A ) )  =  ( abs `  (
( F `  w
)  -  A ) ) )
3130breq1d 4164 . . . . . . . . . . . 12  |-  ( k  =  w  ->  (
( abs `  (
( F `  k
)  -  A ) )  <  y  <->  ( abs `  ( ( F `  w )  -  A
) )  <  y
) )
3231rspcv 2992 . . . . . . . . . . 11  |-  ( w  e.  ( ZZ>= `  z
)  ->  ( A. k  e.  ( ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A
) )  <  y  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) )
3326, 27, 32sylc 58 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  -> 
( abs `  (
( F `  w
)  -  A ) )  <  y )
3433expr 599 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  w  e.  Z
)  ->  ( z  <_  w  ->  ( abs `  ( ( F `  w )  -  A
) )  <  y
) )
3534ralrimiva 2733 . . . . . . . 8  |-  ( ( ( ( ph  /\  F 
~~>  A )  /\  y  e.  RR+ )  /\  (
z  e.  Z  /\  A. k  e.  ( ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A
) )  <  y
) )  ->  A. w  e.  Z  ( z  <_  w  ->  ( abs `  ( ( F `  w )  -  A
) )  <  y
) )
3635expr 599 . . . . . . 7  |-  ( ( ( ( ph  /\  F 
~~>  A )  /\  y  e.  RR+ )  /\  z  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y  ->  A. w  e.  Z  ( z  <_  w  ->  ( abs `  ( ( F `  w )  -  A
) )  <  y
) ) )
3736reximdva 2762 . . . . . 6  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  ( E. z  e.  Z  A. k  e.  ( ZZ>=
`  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y  ->  E. z  e.  Z  A. w  e.  Z  ( z  <_  w  ->  ( abs `  ( ( F `  w )  -  A
) )  <  y
) ) )
38 zssre 10222 . . . . . . . 8  |-  ZZ  C_  RR
3919, 38sstri 3301 . . . . . . 7  |-  Z  C_  RR
40 ssrexv 3352 . . . . . . 7  |-  ( Z 
C_  RR  ->  ( E. z  e.  Z  A. w  e.  Z  (
z  <_  w  ->  ( abs `  ( ( F `  w )  -  A ) )  <  y )  ->  E. z  e.  RR  A. w  e.  Z  ( z  <_  w  ->  ( abs `  ( ( F `  w )  -  A ) )  <  y ) ) )
4139, 40ax-mp 8 . . . . . 6  |-  ( E. z  e.  Z  A. w  e.  Z  (
z  <_  w  ->  ( abs `  ( ( F `  w )  -  A ) )  <  y )  ->  E. z  e.  RR  A. w  e.  Z  ( z  <_  w  ->  ( abs `  ( ( F `  w )  -  A ) )  <  y ) )
4237, 41syl6 31 . . . . 5  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  ( E. z  e.  Z  A. k  e.  ( ZZ>=
`  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y  ->  E. z  e.  RR  A. w  e.  Z  ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )
4317, 42mpd 15 . . . 4  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  E. z  e.  RR  A. w  e.  Z  ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) )
4443ralrimiva 2733 . . 3  |-  ( (
ph  /\  F  ~~>  A )  ->  A. y  e.  RR+  E. z  e.  RR  A. w  e.  Z  (
z  <_  w  ->  ( abs `  ( ( F `  w )  -  A ) )  <  y ) )
455adantr 452 . . . 4  |-  ( (
ph  /\  F  ~~>  A )  ->  F : Z --> CC )
4639a1i 11 . . . 4  |-  ( (
ph  /\  F  ~~>  A )  ->  Z  C_  RR )
47 eqidd 2389 . . . 4  |-  ( ( ( ph  /\  F  ~~>  A )  /\  w  e.  Z )  ->  ( F `  w )  =  ( F `  w ) )
4845, 46, 47rlim 12217 . . 3  |-  ( (
ph  /\  F  ~~>  A )  ->  ( F  ~~> r  A  <->  ( A  e.  CC  /\  A. y  e.  RR+  E. z  e.  RR  A. w  e.  Z  ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) ) )
4912, 44, 48mpbir2and 889 . 2  |-  ( (
ph  /\  F  ~~>  A )  ->  F  ~~> r  A
)
5010, 49impbida 806 1  |-  ( ph  ->  ( F  ~~> r  A  <->  F  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650   E.wrex 2651    C_ wss 3264   class class class wbr 4154   dom cdm 4819   -->wf 5391   ` cfv 5395  (class class class)co 6021   CCcc 8922   RRcr 8923    < clt 9054    <_ cle 9055    - cmin 9224   ZZcz 10215   ZZ>=cuz 10421   RR+crp 10545   abscabs 11967    ~~> cli 12206    ~~> r crli 12207
This theorem is referenced by:  climmpt2  12295  climrecl  12305  climge0  12306  caurcvg  12398  caucvg  12400  climfsum  12527  divcnv  12561  dfef2  20677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-n0 10155  df-z 10216  df-uz 10422  df-fl 11130  df-clim 12210  df-rlim 12211
  Copyright terms: Public domain W3C validator