MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim Structured version   Unicode version

Theorem rlimclim 12340
Description: A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim.1  |-  Z  =  ( ZZ>= `  M )
rlimclim.2  |-  ( ph  ->  M  e.  ZZ )
rlimclim.3  |-  ( ph  ->  F : Z --> CC )
Assertion
Ref Expression
rlimclim  |-  ( ph  ->  ( F  ~~> r  A  <->  F  ~~>  A ) )

Proof of Theorem rlimclim
Dummy variables  w  k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimclim.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 rlimclim.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
32adantr 452 . . 3  |-  ( (
ph  /\  F  ~~> r  A
)  ->  M  e.  ZZ )
4 simpr 448 . . 3  |-  ( (
ph  /\  F  ~~> r  A
)  ->  F  ~~> r  A
)
5 rlimclim.3 . . . . 5  |-  ( ph  ->  F : Z --> CC )
6 fdm 5595 . . . . 5  |-  ( F : Z --> CC  ->  dom 
F  =  Z )
7 eqimss2 3401 . . . . 5  |-  ( dom 
F  =  Z  ->  Z  C_  dom  F )
85, 6, 73syl 19 . . . 4  |-  ( ph  ->  Z  C_  dom  F )
98adantr 452 . . 3  |-  ( (
ph  /\  F  ~~> r  A
)  ->  Z  C_  dom  F )
101, 3, 4, 9rlimclim1 12339 . 2  |-  ( (
ph  /\  F  ~~> r  A
)  ->  F  ~~>  A )
11 climcl 12293 . . . 4  |-  ( F  ~~>  A  ->  A  e.  CC )
1211adantl 453 . . 3  |-  ( (
ph  /\  F  ~~>  A )  ->  A  e.  CC )
132ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  M  e.  ZZ )
14 simpr 448 . . . . . 6  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  y  e.  RR+ )
15 eqidd 2437 . . . . . 6  |-  ( ( ( ( ph  /\  F 
~~>  A )  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
16 simplr 732 . . . . . 6  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  F  ~~>  A )
171, 13, 14, 15, 16climi2 12305 . . . . 5  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  E. z  e.  Z  A. k  e.  ( ZZ>= `  z )
( abs `  (
( F `  k
)  -  A ) )  <  y )
18 uzssz 10505 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  M )  C_  ZZ
191, 18eqsstri 3378 . . . . . . . . . . . . 13  |-  Z  C_  ZZ
20 simplrl 737 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  -> 
z  e.  Z )
2119, 20sseldi 3346 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  -> 
z  e.  ZZ )
22 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  ->  w  e.  Z )
2319, 22sseldi 3346 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  ->  w  e.  ZZ )
24 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  -> 
z  <_  w )
25 eluz2 10494 . . . . . . . . . . . 12  |-  ( w  e.  ( ZZ>= `  z
)  <->  ( z  e.  ZZ  /\  w  e.  ZZ  /\  z  <_  w ) )
2621, 23, 24, 25syl3anbrc 1138 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  ->  w  e.  ( ZZ>= `  z ) )
27 simplrr 738 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  ->  A. k  e.  ( ZZ>=
`  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y )
28 fveq2 5728 . . . . . . . . . . . . . . 15  |-  ( k  =  w  ->  ( F `  k )  =  ( F `  w ) )
2928oveq1d 6096 . . . . . . . . . . . . . 14  |-  ( k  =  w  ->  (
( F `  k
)  -  A )  =  ( ( F `
 w )  -  A ) )
3029fveq2d 5732 . . . . . . . . . . . . 13  |-  ( k  =  w  ->  ( abs `  ( ( F `
 k )  -  A ) )  =  ( abs `  (
( F `  w
)  -  A ) ) )
3130breq1d 4222 . . . . . . . . . . . 12  |-  ( k  =  w  ->  (
( abs `  (
( F `  k
)  -  A ) )  <  y  <->  ( abs `  ( ( F `  w )  -  A
) )  <  y
) )
3231rspcv 3048 . . . . . . . . . . 11  |-  ( w  e.  ( ZZ>= `  z
)  ->  ( A. k  e.  ( ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A
) )  <  y  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) )
3326, 27, 32sylc 58 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  ( w  e.  Z  /\  z  <_  w ) )  -> 
( abs `  (
( F `  w
)  -  A ) )  <  y )
3433expr 599 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  /\  ( z  e.  Z  /\  A. k  e.  (
ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y ) )  /\  w  e.  Z
)  ->  ( z  <_  w  ->  ( abs `  ( ( F `  w )  -  A
) )  <  y
) )
3534ralrimiva 2789 . . . . . . . 8  |-  ( ( ( ( ph  /\  F 
~~>  A )  /\  y  e.  RR+ )  /\  (
z  e.  Z  /\  A. k  e.  ( ZZ>= `  z ) ( abs `  ( ( F `  k )  -  A
) )  <  y
) )  ->  A. w  e.  Z  ( z  <_  w  ->  ( abs `  ( ( F `  w )  -  A
) )  <  y
) )
3635expr 599 . . . . . . 7  |-  ( ( ( ( ph  /\  F 
~~>  A )  /\  y  e.  RR+ )  /\  z  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y  ->  A. w  e.  Z  ( z  <_  w  ->  ( abs `  ( ( F `  w )  -  A
) )  <  y
) ) )
3736reximdva 2818 . . . . . 6  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  ( E. z  e.  Z  A. k  e.  ( ZZ>=
`  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y  ->  E. z  e.  Z  A. w  e.  Z  ( z  <_  w  ->  ( abs `  ( ( F `  w )  -  A
) )  <  y
) ) )
38 zssre 10289 . . . . . . . 8  |-  ZZ  C_  RR
3919, 38sstri 3357 . . . . . . 7  |-  Z  C_  RR
40 ssrexv 3408 . . . . . . 7  |-  ( Z 
C_  RR  ->  ( E. z  e.  Z  A. w  e.  Z  (
z  <_  w  ->  ( abs `  ( ( F `  w )  -  A ) )  <  y )  ->  E. z  e.  RR  A. w  e.  Z  ( z  <_  w  ->  ( abs `  ( ( F `  w )  -  A ) )  <  y ) ) )
4139, 40ax-mp 8 . . . . . 6  |-  ( E. z  e.  Z  A. w  e.  Z  (
z  <_  w  ->  ( abs `  ( ( F `  w )  -  A ) )  <  y )  ->  E. z  e.  RR  A. w  e.  Z  ( z  <_  w  ->  ( abs `  ( ( F `  w )  -  A ) )  <  y ) )
4237, 41syl6 31 . . . . 5  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  ( E. z  e.  Z  A. k  e.  ( ZZ>=
`  z ) ( abs `  ( ( F `  k )  -  A ) )  <  y  ->  E. z  e.  RR  A. w  e.  Z  ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )
4317, 42mpd 15 . . . 4  |-  ( ( ( ph  /\  F  ~~>  A )  /\  y  e.  RR+ )  ->  E. z  e.  RR  A. w  e.  Z  ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) )
4443ralrimiva 2789 . . 3  |-  ( (
ph  /\  F  ~~>  A )  ->  A. y  e.  RR+  E. z  e.  RR  A. w  e.  Z  (
z  <_  w  ->  ( abs `  ( ( F `  w )  -  A ) )  <  y ) )
455adantr 452 . . . 4  |-  ( (
ph  /\  F  ~~>  A )  ->  F : Z --> CC )
4639a1i 11 . . . 4  |-  ( (
ph  /\  F  ~~>  A )  ->  Z  C_  RR )
47 eqidd 2437 . . . 4  |-  ( ( ( ph  /\  F  ~~>  A )  /\  w  e.  Z )  ->  ( F `  w )  =  ( F `  w ) )
4845, 46, 47rlim 12289 . . 3  |-  ( (
ph  /\  F  ~~>  A )  ->  ( F  ~~> r  A  <->  ( A  e.  CC  /\  A. y  e.  RR+  E. z  e.  RR  A. w  e.  Z  ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) ) )
4912, 44, 48mpbir2and 889 . 2  |-  ( (
ph  /\  F  ~~>  A )  ->  F  ~~> r  A
)
5010, 49impbida 806 1  |-  ( ph  ->  ( F  ~~> r  A  <->  F  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706    C_ wss 3320   class class class wbr 4212   dom cdm 4878   -->wf 5450   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989    < clt 9120    <_ cle 9121    - cmin 9291   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   abscabs 12039    ~~> cli 12278    ~~> r crli 12279
This theorem is referenced by:  climmpt2  12367  climrecl  12377  climge0  12378  caurcvg  12470  caucvg  12472  climfsum  12599  divcnv  12633  dfef2  20809
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-fl 11202  df-clim 12282  df-rlim 12283
  Copyright terms: Public domain W3C validator