MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn2 Unicode version

Theorem rlimcn2 12060
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
rlimcn2.1a  |-  ( (
ph  /\  z  e.  A )  ->  B  e.  X )
rlimcn2.1b  |-  ( (
ph  /\  z  e.  A )  ->  C  e.  Y )
rlimcn2.2a  |-  ( ph  ->  R  e.  X )
rlimcn2.2b  |-  ( ph  ->  S  e.  Y )
rlimcn2.3a  |-  ( ph  ->  ( z  e.  A  |->  B )  ~~> r  R
)
rlimcn2.3b  |-  ( ph  ->  ( z  e.  A  |->  C )  ~~> r  S
)
rlimcn2.4  |-  ( ph  ->  F : ( X  X.  Y ) --> CC )
rlimcn2.5  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. r  e.  RR+  E. s  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( abs `  ( u  -  R
) )  <  r  /\  ( abs `  (
v  -  S ) )  <  s )  ->  ( abs `  (
( u F v )  -  ( R F S ) ) )  <  x ) )
Assertion
Ref Expression
rlimcn2  |-  ( ph  ->  ( z  e.  A  |->  ( B F C ) )  ~~> r  ( R F S ) )
Distinct variable groups:    s, r, x, z, A    u, r,
v, F, s, x, z    R, r, s, u, v, x, z    B, r, s, u, v, x    ph, r, s, x, z    S, r, s, u, v, x, z    C, r, s, v, x    u, X, z    u, Y, v, z
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
Allowed substitution groups:    ph( v, u)    A( v, u)    B( z)    C( z, u)    X( x, v, s, r)    Y( x, s, r)

Proof of Theorem rlimcn2
StepHypRef Expression
1 rlimcn2.5 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. r  e.  RR+  E. s  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( abs `  ( u  -  R
) )  <  r  /\  ( abs `  (
v  -  S ) )  <  s )  ->  ( abs `  (
( u F v )  -  ( R F S ) ) )  <  x ) )
2 rlimcn2.1a . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  B  e.  X )
32ralrimiva 2629 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  A  B  e.  X )
43adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  s  e.  RR+ ) )  ->  A. z  e.  A  B  e.  X )
5 simprl 734 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  s  e.  RR+ ) )  ->  r  e.  RR+ )
6 rlimcn2.3a . . . . . . . . 9  |-  ( ph  ->  ( z  e.  A  |->  B )  ~~> r  R
)
76adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  s  e.  RR+ ) )  ->  (
z  e.  A  |->  B )  ~~> r  R )
84, 5, 7rlimi 11983 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  RR+  /\  s  e.  RR+ ) )  ->  E. a  e.  RR  A. z  e.  A  ( a  <_ 
z  ->  ( abs `  ( B  -  R
) )  <  r
) )
9 rlimcn2.1b . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  C  e.  Y )
109ralrimiva 2629 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  A  C  e.  Y )
1110adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  s  e.  RR+ ) )  ->  A. z  e.  A  C  e.  Y )
12 simprr 735 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  s  e.  RR+ ) )  ->  s  e.  RR+ )
13 rlimcn2.3b . . . . . . . . 9  |-  ( ph  ->  ( z  e.  A  |->  C )  ~~> r  S
)
1413adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  s  e.  RR+ ) )  ->  (
z  e.  A  |->  C )  ~~> r  S )
1511, 12, 14rlimi 11983 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  RR+  /\  s  e.  RR+ ) )  ->  E. b  e.  RR  A. z  e.  A  ( b  <_ 
z  ->  ( abs `  ( C  -  S
) )  <  s
) )
16 reeanv 2710 . . . . . . . 8  |-  ( E. a  e.  RR  E. b  e.  RR  ( A. z  e.  A  ( a  <_  z  ->  ( abs `  ( B  -  R )
)  <  r )  /\  A. z  e.  A  ( b  <_  z  ->  ( abs `  ( C  -  S )
)  <  s )
)  <->  ( E. a  e.  RR  A. z  e.  A  ( a  <_ 
z  ->  ( abs `  ( B  -  R
) )  <  r
)  /\  E. b  e.  RR  A. z  e.  A  ( b  <_ 
z  ->  ( abs `  ( C  -  S
) )  <  s
) ) )
17 r19.26 2678 . . . . . . . . . 10  |-  ( A. z  e.  A  (
( a  <_  z  ->  ( abs `  ( B  -  R )
)  <  r )  /\  ( b  <_  z  ->  ( abs `  ( C  -  S )
)  <  s )
)  <->  ( A. z  e.  A  ( a  <_  z  ->  ( abs `  ( B  -  R
) )  <  r
)  /\  A. z  e.  A  ( b  <_  z  ->  ( abs `  ( C  -  S
) )  <  s
) ) )
18 prth 556 . . . . . . . . . . . . 13  |-  ( ( ( a  <_  z  ->  ( abs `  ( B  -  R )
)  <  r )  /\  ( b  <_  z  ->  ( abs `  ( C  -  S )
)  <  s )
)  ->  ( (
a  <_  z  /\  b  <_  z )  -> 
( ( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( C  -  S ) )  <  s ) ) )
19 simplrl 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  z  e.  A )  ->  a  e.  RR )
20 simplrr 739 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  z  e.  A )  ->  b  e.  RR )
21 eqid 2286 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  A  |->  B )  =  ( z  e.  A  |->  B )
222, 21fmptd 5647 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( z  e.  A  |->  B ) : A --> X )
23 fdm 5360 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  A  |->  B ) : A --> X  ->  dom  (  z  e.  A  |->  B )  =  A )
2422, 23syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  (  z  e.  A  |->  B )  =  A )
25 rlimss 11972 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  A  |->  B )  ~~> r  R  ->  dom  (  z  e.  A  |->  B )  C_  RR )
266, 25syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  (  z  e.  A  |->  B )  C_  RR )
2724, 26eqsstr3d 3216 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  C_  RR )
2827ad2antrr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  s  e.  RR+ ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  ->  A  C_  RR )
2928sselda 3183 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  z  e.  A )  ->  z  e.  RR )
30 maxle 10515 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  z  e.  RR )  ->  ( if ( a  <_  b ,  b ,  a )  <_  z  <->  ( a  <_  z  /\  b  <_ 
z ) ) )
3119, 20, 29, 30syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  z  e.  A )  ->  ( if ( a  <_  b ,  b ,  a )  <_ 
z  <->  ( a  <_ 
z  /\  b  <_  z ) ) )
3231imbi1d 310 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  z  e.  A )  ->  ( ( if ( a  <_  b , 
b ,  a )  <_  z  ->  (
( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( C  -  S ) )  <  s ) )  <-> 
( ( a  <_ 
z  /\  b  <_  z )  ->  ( ( abs `  ( B  -  R ) )  < 
r  /\  ( abs `  ( C  -  S
) )  <  s
) ) ) )
3318, 32syl5ibr 214 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  z  e.  A )  ->  ( ( ( a  <_  z  ->  ( abs `  ( B  -  R ) )  < 
r )  /\  (
b  <_  z  ->  ( abs `  ( C  -  S ) )  <  s ) )  ->  ( if ( a  <_  b , 
b ,  a )  <_  z  ->  (
( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( C  -  S ) )  <  s ) ) ) )
3433ralimdva 2624 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  s  e.  RR+ ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  ->  ( A. z  e.  A  (
( a  <_  z  ->  ( abs `  ( B  -  R )
)  <  r )  /\  ( b  <_  z  ->  ( abs `  ( C  -  S )
)  <  s )
)  ->  A. z  e.  A  ( if ( a  <_  b ,  b ,  a )  <_  z  ->  ( ( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( C  -  S ) )  <  s ) ) ) )
35 ifcl 3604 . . . . . . . . . . . . . . . 16  |-  ( ( b  e.  RR  /\  a  e.  RR )  ->  if ( a  <_ 
b ,  b ,  a )  e.  RR )
3635ancoms 441 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  if ( a  <_ 
b ,  b ,  a )  e.  RR )
3736ad2antlr 709 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  A. u  e.  X  A. v  e.  Y  (
( ( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x ) )  ->  if (
a  <_  b , 
b ,  a )  e.  RR )
382adantlr 697 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  s  e.  RR+ ) )  /\  z  e.  A )  ->  B  e.  X )
399adantlr 697 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  s  e.  RR+ ) )  /\  z  e.  A )  ->  C  e.  Y )
4038, 39jca 520 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  s  e.  RR+ ) )  /\  z  e.  A )  ->  ( B  e.  X  /\  C  e.  Y
) )
41 oveq1 5828 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( u  =  B  ->  (
u  -  R )  =  ( B  -  R ) )
4241fveq2d 5491 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( u  =  B  ->  ( abs `  ( u  -  R ) )  =  ( abs `  ( B  -  R )
) )
4342breq1d 4036 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  B  ->  (
( abs `  (
u  -  R ) )  <  r  <->  ( abs `  ( B  -  R
) )  <  r
) )
4443anbi1d 687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  B  ->  (
( ( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  <->  ( ( abs `  ( B  -  R ) )  < 
r  /\  ( abs `  ( v  -  S
) )  <  s
) ) )
45 oveq1 5828 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( u  =  B  ->  (
u F v )  =  ( B F v ) )
4645oveq1d 5836 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( u  =  B  ->  (
( u F v )  -  ( R F S ) )  =  ( ( B F v )  -  ( R F S ) ) )
4746fveq2d 5491 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  B  ->  ( abs `  ( ( u F v )  -  ( R F S ) ) )  =  ( abs `  ( ( B F v )  -  ( R F S ) ) ) )
4847breq1d 4036 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  B  ->  (
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x  <->  ( abs `  ( ( B F v )  -  ( R F S ) ) )  <  x ) )
4944, 48imbi12d 313 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  B  ->  (
( ( ( abs `  ( u  -  R
) )  <  r  /\  ( abs `  (
v  -  S ) )  <  s )  ->  ( abs `  (
( u F v )  -  ( R F S ) ) )  <  x )  <-> 
( ( ( abs `  ( B  -  R
) )  <  r  /\  ( abs `  (
v  -  S ) )  <  s )  ->  ( abs `  (
( B F v )  -  ( R F S ) ) )  <  x ) ) )
50 oveq1 5828 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  =  C  ->  (
v  -  S )  =  ( C  -  S ) )
5150fveq2d 5491 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  C  ->  ( abs `  ( v  -  S ) )  =  ( abs `  ( C  -  S )
) )
5251breq1d 4036 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  C  ->  (
( abs `  (
v  -  S ) )  <  s  <->  ( abs `  ( C  -  S
) )  <  s
) )
5352anbi2d 686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  C  ->  (
( ( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  <->  ( ( abs `  ( B  -  R ) )  < 
r  /\  ( abs `  ( C  -  S
) )  <  s
) ) )
54 oveq2 5829 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  =  C  ->  ( B F v )  =  ( B F C ) )
5554oveq1d 5836 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  C  ->  (
( B F v )  -  ( R F S ) )  =  ( ( B F C )  -  ( R F S ) ) )
5655fveq2d 5491 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  C  ->  ( abs `  ( ( B F v )  -  ( R F S ) ) )  =  ( abs `  ( ( B F C )  -  ( R F S ) ) ) )
5756breq1d 4036 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  C  ->  (
( abs `  (
( B F v )  -  ( R F S ) ) )  <  x  <->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) )
5853, 57imbi12d 313 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  C  ->  (
( ( ( abs `  ( B  -  R
) )  <  r  /\  ( abs `  (
v  -  S ) )  <  s )  ->  ( abs `  (
( B F v )  -  ( R F S ) ) )  <  x )  <-> 
( ( ( abs `  ( B  -  R
) )  <  r  /\  ( abs `  ( C  -  S )
)  <  s )  ->  ( abs `  (
( B F C )  -  ( R F S ) ) )  <  x ) ) )
5949, 58rspc2va 2894 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  X  /\  C  e.  Y
)  /\  A. u  e.  X  A. v  e.  Y  ( (
( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x ) )  ->  ( (
( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( C  -  S ) )  <  s )  -> 
( abs `  (
( B F C )  -  ( R F S ) ) )  <  x ) )
6040, 59sylan 459 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  /\  z  e.  A )  /\  A. u  e.  X  A. v  e.  Y  (
( ( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x ) )  ->  ( (
( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( C  -  S ) )  <  s )  -> 
( abs `  (
( B F C )  -  ( R F S ) ) )  <  x ) )
6160imim2d 50 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  /\  z  e.  A )  /\  A. u  e.  X  A. v  e.  Y  (
( ( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x ) )  ->  ( ( if ( a  <_  b ,  b ,  a )  <_  z  ->  ( ( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( C  -  S ) )  <  s ) )  ->  ( if ( a  <_  b , 
b ,  a )  <_  z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x
) ) )
6261an32s 781 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  /\  A. u  e.  X  A. v  e.  Y  ( (
( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x ) )  /\  z  e.  A )  ->  (
( if ( a  <_  b ,  b ,  a )  <_ 
z  ->  ( ( abs `  ( B  -  R ) )  < 
r  /\  ( abs `  ( C  -  S
) )  <  s
) )  ->  ( if ( a  <_  b ,  b ,  a )  <_  z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) ) )
6362ralimdva 2624 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  s  e.  RR+ ) )  /\  A. u  e.  X  A. v  e.  Y  (
( ( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x ) )  ->  ( A. z  e.  A  ( if ( a  <_  b ,  b ,  a )  <_  z  ->  ( ( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( C  -  S ) )  <  s ) )  ->  A. z  e.  A  ( if ( a  <_ 
b ,  b ,  a )  <_  z  ->  ( abs `  (
( B F C )  -  ( R F S ) ) )  <  x ) ) )
6463adantlr 697 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  A. u  e.  X  A. v  e.  Y  (
( ( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x ) )  ->  ( A. z  e.  A  ( if ( a  <_  b ,  b ,  a )  <_  z  ->  ( ( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( C  -  S ) )  <  s ) )  ->  A. z  e.  A  ( if ( a  <_ 
b ,  b ,  a )  <_  z  ->  ( abs `  (
( B F C )  -  ( R F S ) ) )  <  x ) ) )
65 breq1 4029 . . . . . . . . . . . . . . . . 17  |-  ( c  =  if ( a  <_  b ,  b ,  a )  -> 
( c  <_  z  <->  if ( a  <_  b ,  b ,  a )  <_  z )
)
6665imbi1d 310 . . . . . . . . . . . . . . . 16  |-  ( c  =  if ( a  <_  b ,  b ,  a )  -> 
( ( c  <_ 
z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x )  <-> 
( if ( a  <_  b ,  b ,  a )  <_ 
z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) ) )
6766ralbidv 2566 . . . . . . . . . . . . . . 15  |-  ( c  =  if ( a  <_  b ,  b ,  a )  -> 
( A. z  e.  A  ( c  <_ 
z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x )  <->  A. z  e.  A  ( if ( a  <_ 
b ,  b ,  a )  <_  z  ->  ( abs `  (
( B F C )  -  ( R F S ) ) )  <  x ) ) )
6867rspcev 2887 . . . . . . . . . . . . . 14  |-  ( ( if ( a  <_ 
b ,  b ,  a )  e.  RR  /\ 
A. z  e.  A  ( if ( a  <_ 
b ,  b ,  a )  <_  z  ->  ( abs `  (
( B F C )  -  ( R F S ) ) )  <  x ) )  ->  E. c  e.  RR  A. z  e.  A  ( c  <_ 
z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) )
6937, 64, 68ee12an 1355 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  /\  ( a  e.  RR  /\  b  e.  RR ) )  /\  A. u  e.  X  A. v  e.  Y  (
( ( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x ) )  ->  ( A. z  e.  A  ( if ( a  <_  b ,  b ,  a )  <_  z  ->  ( ( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( C  -  S ) )  <  s ) )  ->  E. c  e.  RR  A. z  e.  A  ( c  <_  z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) ) )
7069ex 425 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  s  e.  RR+ ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  ->  ( A. u  e.  X  A. v  e.  Y  (
( ( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x )  ->  ( A. z  e.  A  ( if ( a  <_  b ,  b ,  a )  <_  z  ->  ( ( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( C  -  S ) )  <  s ) )  ->  E. c  e.  RR  A. z  e.  A  ( c  <_  z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) ) ) )
7170com23 74 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  s  e.  RR+ ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  ->  ( A. z  e.  A  ( if ( a  <_  b ,  b ,  a )  <_  z  ->  ( ( abs `  ( B  -  R )
)  <  r  /\  ( abs `  ( C  -  S ) )  <  s ) )  ->  ( A. u  e.  X  A. v  e.  Y  ( (
( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x )  ->  E. c  e.  RR  A. z  e.  A  ( c  <_  z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) ) ) )
7234, 71syld 42 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  s  e.  RR+ ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  ->  ( A. z  e.  A  (
( a  <_  z  ->  ( abs `  ( B  -  R )
)  <  r )  /\  ( b  <_  z  ->  ( abs `  ( C  -  S )
)  <  s )
)  ->  ( A. u  e.  X  A. v  e.  Y  (
( ( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x )  ->  E. c  e.  RR  A. z  e.  A  ( c  <_  z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) ) ) )
7317, 72syl5bir 211 . . . . . . . . 9  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  s  e.  RR+ ) )  /\  ( a  e.  RR  /\  b  e.  RR ) )  ->  ( ( A. z  e.  A  ( a  <_  z  ->  ( abs `  ( B  -  R )
)  <  r )  /\  A. z  e.  A  ( b  <_  z  ->  ( abs `  ( C  -  S )
)  <  s )
)  ->  ( A. u  e.  X  A. v  e.  Y  (
( ( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x )  ->  E. c  e.  RR  A. z  e.  A  ( c  <_  z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) ) ) )
7473rexlimdvva 2677 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  s  e.  RR+ ) )  ->  ( E. a  e.  RR  E. b  e.  RR  ( A. z  e.  A  ( a  <_  z  ->  ( abs `  ( B  -  R )
)  <  r )  /\  A. z  e.  A  ( b  <_  z  ->  ( abs `  ( C  -  S )
)  <  s )
)  ->  ( A. u  e.  X  A. v  e.  Y  (
( ( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x )  ->  E. c  e.  RR  A. z  e.  A  ( c  <_  z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) ) ) )
7516, 74syl5bir 211 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  RR+  /\  s  e.  RR+ ) )  ->  (
( E. a  e.  RR  A. z  e.  A  ( a  <_ 
z  ->  ( abs `  ( B  -  R
) )  <  r
)  /\  E. b  e.  RR  A. z  e.  A  ( b  <_ 
z  ->  ( abs `  ( C  -  S
) )  <  s
) )  ->  ( A. u  e.  X  A. v  e.  Y  ( ( ( abs `  ( u  -  R
) )  <  r  /\  ( abs `  (
v  -  S ) )  <  s )  ->  ( abs `  (
( u F v )  -  ( R F S ) ) )  <  x )  ->  E. c  e.  RR  A. z  e.  A  ( c  <_  z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) ) ) )
768, 15, 75mp2and 662 . . . . . 6  |-  ( (
ph  /\  ( r  e.  RR+  /\  s  e.  RR+ ) )  ->  ( A. u  e.  X  A. v  e.  Y  ( ( ( abs `  ( u  -  R
) )  <  r  /\  ( abs `  (
v  -  S ) )  <  s )  ->  ( abs `  (
( u F v )  -  ( R F S ) ) )  <  x )  ->  E. c  e.  RR  A. z  e.  A  ( c  <_  z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) ) )
7776rexlimdvva 2677 . . . . 5  |-  ( ph  ->  ( E. r  e.  RR+  E. s  e.  RR+  A. u  e.  X  A. v  e.  Y  (
( ( abs `  (
u  -  R ) )  <  r  /\  ( abs `  ( v  -  S ) )  <  s )  -> 
( abs `  (
( u F v )  -  ( R F S ) ) )  <  x )  ->  E. c  e.  RR  A. z  e.  A  ( c  <_  z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) ) )
7877imp 420 . . . 4  |-  ( (
ph  /\  E. r  e.  RR+  E. s  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( abs `  ( u  -  R
) )  <  r  /\  ( abs `  (
v  -  S ) )  <  s )  ->  ( abs `  (
( u F v )  -  ( R F S ) ) )  <  x ) )  ->  E. c  e.  RR  A. z  e.  A  ( c  <_ 
z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) )
791, 78syldan 458 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. c  e.  RR  A. z  e.  A  ( c  <_ 
z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) )
8079ralrimiva 2629 . 2  |-  ( ph  ->  A. x  e.  RR+  E. c  e.  RR  A. z  e.  A  (
c  <_  z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) )
81 rlimcn2.4 . . . . . 6  |-  ( ph  ->  F : ( X  X.  Y ) --> CC )
8281adantr 453 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  F : ( X  X.  Y ) --> CC )
83 fovrn 5953 . . . . 5  |-  ( ( F : ( X  X.  Y ) --> CC 
/\  B  e.  X  /\  C  e.  Y
)  ->  ( B F C )  e.  CC )
8482, 2, 9, 83syl3anc 1184 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  ( B F C )  e.  CC )
8584ralrimiva 2629 . . 3  |-  ( ph  ->  A. z  e.  A  ( B F C )  e.  CC )
86 rlimcn2.2a . . . 4  |-  ( ph  ->  R  e.  X )
87 rlimcn2.2b . . . 4  |-  ( ph  ->  S  e.  Y )
88 fovrn 5953 . . . 4  |-  ( ( F : ( X  X.  Y ) --> CC 
/\  R  e.  X  /\  S  e.  Y
)  ->  ( R F S )  e.  CC )
8981, 86, 87, 88syl3anc 1184 . . 3  |-  ( ph  ->  ( R F S )  e.  CC )
9085, 27, 89rlim2 11966 . 2  |-  ( ph  ->  ( ( z  e.  A  |->  ( B F C ) )  ~~> r  ( R F S )  <->  A. x  e.  RR+  E. c  e.  RR  A. z  e.  A  ( c  <_ 
z  ->  ( abs `  ( ( B F C )  -  ( R F S ) ) )  <  x ) ) )
9180, 90mpbird 225 1  |-  ( ph  ->  ( z  e.  A  |->  ( B F C ) )  ~~> r  ( R F S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1625    e. wcel 1687   A.wral 2546   E.wrex 2547    C_ wss 3155   ifcif 3568   class class class wbr 4026    e. cmpt 4080    X. cxp 4688   dom cdm 4690   -->wf 5219   ` cfv 5223  (class class class)co 5821   CCcc 8732   RRcr 8733    < clt 8864    <_ cle 8865    - cmin 9034   RR+crp 10351   abscabs 11715    ~~> r crli 11955
This theorem is referenced by:  rlimadd  12112  rlimsub  12113  rlimmul  12114
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-cnex 8790  ax-resscn 8791  ax-pre-lttri 8808  ax-pre-lttrn 8809
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-nel 2452  df-ral 2551  df-rex 2552  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3831  df-br 4027  df-opab 4081  df-mpt 4082  df-id 4310  df-po 4315  df-so 4316  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-er 6657  df-pm 6772  df-en 6861  df-dom 6862  df-sdom 6863  df-pnf 8866  df-mnf 8867  df-xr 8868  df-ltxr 8869  df-le 8870  df-rlim 11959
  Copyright terms: Public domain W3C validator