MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimconst Structured version   Unicode version

Theorem rlimconst 12338
Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimconst  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  (
x  e.  A  |->  B )  ~~> r  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem rlimconst
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 9091 . . . 4  |-  0  e.  RR
2 simpllr 736 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  B  e.  CC )
32subidd 9399 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  ( B  -  B )  =  0 )
43fveq2d 5732 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  ( abs `  ( B  -  B
) )  =  ( abs `  0 ) )
5 abs0 12090 . . . . . . . 8  |-  ( abs `  0 )  =  0
64, 5syl6eq 2484 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  ( abs `  ( B  -  B
) )  =  0 )
7 rpgt0 10623 . . . . . . . 8  |-  ( y  e.  RR+  ->  0  < 
y )
87ad2antlr 708 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  0  <  y )
96, 8eqbrtrd 4232 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  ( abs `  ( B  -  B
) )  <  y
)
109a1d 23 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  ( 0  <_  x  ->  ( abs `  ( B  -  B ) )  < 
y ) )
1110ralrimiva 2789 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  ->  A. x  e.  A  ( 0  <_  x  ->  ( abs `  ( B  -  B )
)  <  y )
)
12 breq1 4215 . . . . . . 7  |-  ( z  =  0  ->  (
z  <_  x  <->  0  <_  x ) )
1312imbi1d 309 . . . . . 6  |-  ( z  =  0  ->  (
( z  <_  x  ->  ( abs `  ( B  -  B )
)  <  y )  <->  ( 0  <_  x  ->  ( abs `  ( B  -  B ) )  <  y ) ) )
1413ralbidv 2725 . . . . 5  |-  ( z  =  0  ->  ( A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  B )
)  <  y )  <->  A. x  e.  A  ( 0  <_  x  ->  ( abs `  ( B  -  B ) )  <  y ) ) )
1514rspcev 3052 . . . 4  |-  ( ( 0  e.  RR  /\  A. x  e.  A  ( 0  <_  x  ->  ( abs `  ( B  -  B ) )  <  y ) )  ->  E. z  e.  RR  A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  B ) )  <  y ) )
161, 11, 15sylancr 645 . . 3  |-  ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  ->  E. z  e.  RR  A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  B ) )  <  y ) )
1716ralrimiva 2789 . 2  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  A. y  e.  RR+  E. z  e.  RR  A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  B )
)  <  y )
)
18 simplr 732 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  CC )  /\  x  e.  A
)  ->  B  e.  CC )
1918ralrimiva 2789 . . 3  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  A. x  e.  A  B  e.  CC )
20 simpl 444 . . 3  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  A  C_  RR )
21 simpr 448 . . 3  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  B  e.  CC )
2219, 20, 21rlim2 12290 . 2  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  (
( x  e.  A  |->  B )  ~~> r  B  <->  A. y  e.  RR+  E. z  e.  RR  A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  B )
)  <  y )
) )
2317, 22mpbird 224 1  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  (
x  e.  A  |->  B )  ~~> r  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706    C_ wss 3320   class class class wbr 4212    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990    < clt 9120    <_ cle 9121    - cmin 9291   RR+crp 10612   abscabs 12039    ~~> r crli 12279
This theorem is referenced by:  o1const  12413  rlimneg  12440  caucvgr  12469  fsumrlim  12590  dvfsumrlimge0  19914  dvfsumrlim2  19916  logexprlim  21009  chebbnd2  21171  chto1lb  21172  chpchtlim  21173  dchrisum0lem1  21210  selberglem2  21240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-rlim 12283
  Copyright terms: Public domain W3C validator