MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcxp Unicode version

Theorem rlimcxp 20264
Description: Any power to a positive exponent of a converging sequence also converges. (Contributed by Mario Carneiro, 18-Sep-2014.)
Hypotheses
Ref Expression
rlimcxp.1  |-  ( (
ph  /\  n  e.  A )  ->  B  e.  V )
rlimcxp.2  |-  ( ph  ->  ( n  e.  A  |->  B )  ~~> r  0 )
rlimcxp.3  |-  ( ph  ->  C  e.  RR+ )
Assertion
Ref Expression
rlimcxp  |-  ( ph  ->  ( n  e.  A  |->  ( B  ^ c  C ) )  ~~> r  0 )
Distinct variable groups:    A, n    C, n    ph, n
Dummy variables  x  y are mutually distinct and distinct from all other variables.
Allowed substitution groups:    B( n)    V( n)

Proof of Theorem rlimcxp
StepHypRef Expression
1 rlimcxp.2 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  A  |->  B )  ~~> r  0 )
2 rlimf 11971 . . . . . . . . 9  |-  ( ( n  e.  A  |->  B )  ~~> r  0  -> 
( n  e.  A  |->  B ) : dom  (  n  e.  A  |->  B ) --> CC )
31, 2syl 17 . . . . . . . 8  |-  ( ph  ->  ( n  e.  A  |->  B ) : dom  (  n  e.  A  |->  B ) --> CC )
4 rlimcxp.1 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  A )  ->  B  e.  V )
54ralrimiva 2629 . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  A  B  e.  V )
6 dmmptg 5170 . . . . . . . . . 10  |-  ( A. n  e.  A  B  e.  V  ->  dom  (  n  e.  A  |->  B )  =  A )
75, 6syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  (  n  e.  A  |->  B )  =  A )
87feq2d 5347 . . . . . . . 8  |-  ( ph  ->  ( ( n  e.  A  |->  B ) : dom  (  n  e.  A  |->  B ) --> CC  <->  ( n  e.  A  |->  B ) : A --> CC ) )
93, 8mpbid 203 . . . . . . 7  |-  ( ph  ->  ( n  e.  A  |->  B ) : A --> CC )
10 eqid 2286 . . . . . . . 8  |-  ( n  e.  A  |->  B )  =  ( n  e.  A  |->  B )
1110fmpt 5644 . . . . . . 7  |-  ( A. n  e.  A  B  e.  CC  <->  ( n  e.  A  |->  B ) : A --> CC )
129, 11sylibr 205 . . . . . 6  |-  ( ph  ->  A. n  e.  A  B  e.  CC )
1312adantr 453 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  A. n  e.  A  B  e.  CC )
14 simpr 449 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
15 rlimcxp.3 . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
1615adantr 453 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  RR+ )
1716rprecred 10398 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  C )  e.  RR )
1814, 17rpcxpcld 20073 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  ^ c  ( 1  /  C ) )  e.  RR+ )
191adantr 453 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( n  e.  A  |->  B )  ~~> r  0 )
2013, 18, 19rlimi 11983 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR  A. n  e.  A  ( y  <_  n  ->  ( abs `  ( B  -  0 ) )  <  ( x  ^ c  ( 1  /  C ) ) ) )
214, 1rlimmptrcl 12077 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  A )  ->  B  e.  CC )
2221adantlr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  B  e.  CC )
2322abscld 11914 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  ( abs `  B )  e.  RR )
2422absge0d 11922 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  0  <_  ( abs `  B
) )
2518adantr 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
x  ^ c  ( 1  /  C ) )  e.  RR+ )
2625rpred 10387 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
x  ^ c  ( 1  /  C ) )  e.  RR )
2725rpge0d 10391 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  0  <_  ( x  ^ c 
( 1  /  C
) ) )
2815ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  C  e.  RR+ )
2923, 24, 26, 27, 28cxplt2d 20069 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( abs `  B
)  <  ( x  ^ c  ( 1  /  C ) )  <-> 
( ( abs `  B
)  ^ c  C
)  <  ( (
x  ^ c  ( 1  /  C ) )  ^ c  C
) ) )
3022subid1d 9143 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  ( B  -  0 )  =  B )
3130fveq2d 5491 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  ( abs `  ( B  - 
0 ) )  =  ( abs `  B
) )
3231breq1d 4036 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( abs `  ( B  -  0 ) )  <  ( x  ^ c  ( 1  /  C ) )  <-> 
( abs `  B
)  <  ( x  ^ c  ( 1  /  C ) ) ) )
3328rpred 10387 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  C  e.  RR )
34 abscxp2 20036 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  C  e.  RR )  ->  ( abs `  ( B  ^ c  C ) )  =  ( ( abs `  B )  ^ c  C ) )
3522, 33, 34syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  ( abs `  ( B  ^ c  C ) )  =  ( ( abs `  B
)  ^ c  C
) )
3628rpcnd 10389 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  C  e.  CC )
3728rpne0d 10392 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  C  =/=  0 )
3836, 37recid2d 9529 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( 1  /  C
)  x.  C )  =  1 )
3938oveq2d 5837 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
x  ^ c  ( ( 1  /  C
)  x.  C ) )  =  ( x  ^ c  1 ) )
40 simplr 733 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  x  e.  RR+ )
4117adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
1  /  C )  e.  RR )
4240, 41, 36cxpmuld 20077 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
x  ^ c  ( ( 1  /  C
)  x.  C ) )  =  ( ( x  ^ c  ( 1  /  C ) )  ^ c  C
) )
4340rpcnd 10389 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  x  e.  CC )
4443cxp1d 20049 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
x  ^ c  1 )  =  x )
4539, 42, 443eqtr3rd 2327 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  x  =  ( ( x  ^ c  ( 1  /  C ) )  ^ c  C ) )
4635, 45breq12d 4039 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( abs `  ( B  ^ c  C ) )  <  x  <->  ( ( abs `  B )  ^ c  C )  <  (
( x  ^ c 
( 1  /  C
) )  ^ c  C ) ) )
4729, 32, 463bitr4d 278 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( abs `  ( B  -  0 ) )  <  ( x  ^ c  ( 1  /  C ) )  <-> 
( abs `  ( B  ^ c  C ) )  <  x ) )
4847biimpd 200 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( abs `  ( B  -  0 ) )  <  ( x  ^ c  ( 1  /  C ) )  ->  ( abs `  ( B  ^ c  C ) )  <  x ) )
4948imim2d 50 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( y  <_  n  ->  ( abs `  ( B  -  0 ) )  <  ( x  ^ c  ( 1  /  C ) ) )  ->  ( y  <_  n  ->  ( abs `  ( B  ^ c  C ) )  < 
x ) ) )
5049ralimdva 2624 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. n  e.  A  (
y  <_  n  ->  ( abs `  ( B  -  0 ) )  <  ( x  ^ c  ( 1  /  C ) ) )  ->  A. n  e.  A  ( y  <_  n  ->  ( abs `  ( B  ^ c  C ) )  <  x ) ) )
5150reximdv 2657 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR  A. n  e.  A  ( y  <_  n  ->  ( abs `  ( B  -  0 ) )  <  (
x  ^ c  ( 1  /  C ) ) )  ->  E. y  e.  RR  A. n  e.  A  ( y  <_  n  ->  ( abs `  ( B  ^ c  C ) )  <  x ) ) )
5220, 51mpd 16 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR  A. n  e.  A  ( y  <_  n  ->  ( abs `  ( B  ^ c  C ) )  <  x ) )
5352ralrimiva 2629 . 2  |-  ( ph  ->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  A  (
y  <_  n  ->  ( abs `  ( B  ^ c  C ) )  <  x ) )
5415rpcnd 10389 . . . . . 6  |-  ( ph  ->  C  e.  CC )
5554adantr 453 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  C  e.  CC )
5621, 55cxpcld 20051 . . . 4  |-  ( (
ph  /\  n  e.  A )  ->  ( B  ^ c  C )  e.  CC )
5756ralrimiva 2629 . . 3  |-  ( ph  ->  A. n  e.  A  ( B  ^ c  C )  e.  CC )
58 rlimss 11972 . . . . 5  |-  ( ( n  e.  A  |->  B )  ~~> r  0  ->  dom  (  n  e.  A  |->  B )  C_  RR )
591, 58syl 17 . . . 4  |-  ( ph  ->  dom  (  n  e.  A  |->  B )  C_  RR )
607, 59eqsstr3d 3216 . . 3  |-  ( ph  ->  A  C_  RR )
6157, 60rlim0 11978 . 2  |-  ( ph  ->  ( ( n  e.  A  |->  ( B  ^ c  C ) )  ~~> r  0  <->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  A  ( y  <_  n  ->  ( abs `  ( B  ^ c  C ) )  <  x ) ) )
6253, 61mpbird 225 1  |-  ( ph  ->  ( n  e.  A  |->  ( B  ^ c  C ) )  ~~> r  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1625    e. wcel 1687   A.wral 2546   E.wrex 2547    C_ wss 3155   class class class wbr 4026    e. cmpt 4080   dom cdm 4690   -->wf 5219   ` cfv 5223  (class class class)co 5821   CCcc 8732   RRcr 8733   0cc0 8734   1c1 8735    x. cmul 8739    < clt 8864    <_ cle 8865    - cmin 9034    / cdiv 9420   RR+crp 10351   abscabs 11715    ~~> r crli 11955    ^ c ccxp 19909
This theorem is referenced by:  cxp2lim  20267  cxploglim2  20269
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-rep 4134  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-inf2 7339  ax-cnex 8790  ax-resscn 8791  ax-1cn 8792  ax-icn 8793  ax-addcl 8794  ax-addrcl 8795  ax-mulcl 8796  ax-mulrcl 8797  ax-mulcom 8798  ax-addass 8799  ax-mulass 8800  ax-distr 8801  ax-i2m1 8802  ax-1ne0 8803  ax-1rid 8804  ax-rnegex 8805  ax-rrecex 8806  ax-cnre 8807  ax-pre-lttri 8808  ax-pre-lttrn 8809  ax-pre-ltadd 8810  ax-pre-mulgt0 8811  ax-pre-sup 8812  ax-addf 8813  ax-mulf 8814
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-nel 2452  df-ral 2551  df-rex 2552  df-reu 2553  df-rmo 2554  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-int 3866  df-iun 3910  df-iin 3911  df-br 4027  df-opab 4081  df-mpt 4082  df-tr 4117  df-eprel 4306  df-id 4310  df-po 4315  df-so 4316  df-fr 4353  df-se 4354  df-we 4355  df-ord 4396  df-on 4397  df-lim 4398  df-suc 4399  df-om 4658  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-isom 5232  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-of 6041  df-1st 6085  df-2nd 6086  df-iota 6254  df-riota 6301  df-recs 6385  df-rdg 6420  df-1o 6476  df-2o 6477  df-oadd 6480  df-er 6657  df-map 6771  df-pm 6772  df-ixp 6815  df-en 6861  df-dom 6862  df-sdom 6863  df-fin 6864  df-fi 7162  df-sup 7191  df-oi 7222  df-card 7569  df-cda 7791  df-pnf 8866  df-mnf 8867  df-xr 8868  df-ltxr 8869  df-le 8870  df-sub 9036  df-neg 9037  df-div 9421  df-nn 9744  df-2 9801  df-3 9802  df-4 9803  df-5 9804  df-6 9805  df-7 9806  df-8 9807  df-9 9808  df-10 9809  df-n0 9963  df-z 10022  df-dec 10122  df-uz 10228  df-q 10314  df-rp 10352  df-xneg 10449  df-xadd 10450  df-xmul 10451  df-ioo 10656  df-ioc 10657  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-fl 10921  df-mod 10970  df-seq 11043  df-exp 11101  df-fac 11285  df-bc 11312  df-hash 11334  df-shft 11558  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-limsup 11941  df-clim 11958  df-rlim 11959  df-sum 12155  df-ef 12345  df-sin 12347  df-cos 12348  df-pi 12350  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-starv 13219  df-sca 13220  df-vsca 13221  df-tset 13223  df-ple 13224  df-ds 13226  df-hom 13228  df-cco 13229  df-rest 13323  df-topn 13324  df-topgen 13340  df-pt 13341  df-prds 13344  df-xrs 13399  df-0g 13400  df-gsum 13401  df-qtop 13406  df-imas 13407  df-xps 13409  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-submnd 14412  df-mulg 14488  df-cntz 14789  df-cmn 15087  df-xmet 16369  df-met 16370  df-bl 16371  df-mopn 16372  df-cnfld 16374  df-top 16632  df-bases 16634  df-topon 16635  df-topsp 16636  df-cld 16752  df-ntr 16753  df-cls 16754  df-nei 16831  df-lp 16864  df-perf 16865  df-cn 16953  df-cnp 16954  df-haus 17039  df-tx 17253  df-hmeo 17442  df-fbas 17516  df-fg 17517  df-fil 17537  df-fm 17629  df-flim 17630  df-flf 17631  df-xms 17881  df-ms 17882  df-tms 17883  df-cncf 18378  df-limc 19212  df-dv 19213  df-log 19910  df-cxp 19911
  Copyright terms: Public domain W3C validator