MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdiv Unicode version

Theorem rlimdiv 12366
Description: Limit of the quotient of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
rlimadd.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
rlimadd.5  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
rlimadd.6  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
rlimdiv.7  |-  ( ph  ->  E  =/=  0 )
rlimdiv.8  |-  ( (
ph  /\  x  e.  A )  ->  C  =/=  0 )
Assertion
Ref Expression
rlimdiv  |-  ( ph  ->  ( x  e.  A  |->  ( B  /  C
) )  ~~> r  ( D  /  E ) )
Distinct variable groups:    x, A    x, D    ph, x    x, E
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem rlimdiv
Dummy variables  w  v  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 rlimadd.5 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
31, 2rlimmptrcl 12328 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4 rlimadd.4 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
5 rlimadd.6 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
64, 5rlimmptrcl 12328 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
7 rlimdiv.8 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  =/=  0 )
86, 7reccld 9715 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
1  /  C )  e.  CC )
9 eldifsn 3870 . . . . . . 7  |-  ( C  e.  ( CC  \  { 0 } )  <-> 
( C  e.  CC  /\  C  =/=  0 ) )
106, 7, 9sylanbrc 646 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  ( CC  \  {
0 } ) )
11 eqid 2387 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1210, 11fmptd 5832 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C ) : A --> ( CC  \  { 0 } ) )
13 rlimcl 12224 . . . . . . 7  |-  ( ( x  e.  A  |->  C )  ~~> r  E  ->  E  e.  CC )
145, 13syl 16 . . . . . 6  |-  ( ph  ->  E  e.  CC )
15 rlimdiv.7 . . . . . 6  |-  ( ph  ->  E  =/=  0 )
16 eldifsn 3870 . . . . . 6  |-  ( E  e.  ( CC  \  { 0 } )  <-> 
( E  e.  CC  /\  E  =/=  0 ) )
1714, 15, 16sylanbrc 646 . . . . 5  |-  ( ph  ->  E  e.  ( CC 
\  { 0 } ) )
18 eldifsn 3870 . . . . . . . 8  |-  ( y  e.  ( CC  \  { 0 } )  <-> 
( y  e.  CC  /\  y  =/=  0 ) )
19 reccl 9617 . . . . . . . 8  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( 1  /  y
)  e.  CC )
2018, 19sylbi 188 . . . . . . 7  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( 1  / 
y )  e.  CC )
2120adantl 453 . . . . . 6  |-  ( (
ph  /\  y  e.  ( CC  \  { 0 } ) )  -> 
( 1  /  y
)  e.  CC )
22 eqid 2387 . . . . . 6  |-  ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) )  =  ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) )
2321, 22fmptd 5832 . . . . 5  |-  ( ph  ->  ( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) ) : ( CC  \  { 0 } ) --> CC )
24 eqid 2387 . . . . . . . 8  |-  ( if ( 1  <_  (
( abs `  E
)  x.  z ) ,  1 ,  ( ( abs `  E
)  x.  z ) )  x.  ( ( abs `  E )  /  2 ) )  =  ( if ( 1  <_  ( ( abs `  E )  x.  z ) ,  1 ,  ( ( abs `  E )  x.  z
) )  x.  (
( abs `  E
)  /  2 ) )
2524reccn2 12317 . . . . . . 7  |-  ( ( E  e.  ( CC 
\  { 0 } )  /\  z  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )
2617, 25sylan 458 . . . . . 6  |-  ( (
ph  /\  z  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )
27 oveq2 6028 . . . . . . . . . . . . . 14  |-  ( y  =  v  ->  (
1  /  y )  =  ( 1  / 
v ) )
28 ovex 6045 . . . . . . . . . . . . . 14  |-  ( 1  /  v )  e. 
_V
2927, 22, 28fvmpt 5745 . . . . . . . . . . . . 13  |-  ( v  e.  ( CC  \  { 0 } )  ->  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  v
)  =  ( 1  /  v ) )
30 oveq2 6028 . . . . . . . . . . . . . . 15  |-  ( y  =  E  ->  (
1  /  y )  =  ( 1  /  E ) )
31 ovex 6045 . . . . . . . . . . . . . . 15  |-  ( 1  /  E )  e. 
_V
3230, 22, 31fvmpt 5745 . . . . . . . . . . . . . 14  |-  ( E  e.  ( CC  \  { 0 } )  ->  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
)  =  ( 1  /  E ) )
3317, 32syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  E )  =  ( 1  /  E ) )
3429, 33oveqan12rd 6040 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  v
)  -  ( ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) `  E ) )  =  ( ( 1  / 
v )  -  (
1  /  E ) ) )
3534fveq2d 5672 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  =  ( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) ) )
3635breq1d 4163 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z  <->  ( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )
3736imbi2d 308 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( ( ( abs `  ( v  -  E
) )  <  w  ->  ( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z )  <->  ( ( abs `  ( v  -  E ) )  < 
w  ->  ( abs `  ( ( 1  / 
v )  -  (
1  /  E ) ) )  <  z
) ) )
3837ralbidva 2665 . . . . . . . 8  |-  ( ph  ->  ( A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z )  <->  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) ) )
3938rexbidv 2670 . . . . . . 7  |-  ( ph  ->  ( E. w  e.  RR+  A. v  e.  ( CC  \  { 0 } ) ( ( abs `  ( v  -  E ) )  <  w  ->  ( abs `  ( ( ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) `  v )  -  (
( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) ) `
 E ) ) )  <  z )  <->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) ) )
4039biimpar 472 . . . . . 6  |-  ( (
ph  /\  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z ) )
4126, 40syldan 457 . . . . 5  |-  ( (
ph  /\  z  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z ) )
4212, 17, 5, 23, 41rlimcn1 12309 . . . 4  |-  ( ph  ->  ( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) )  o.  ( x  e.  A  |->  C ) )  ~~> r  ( ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) `  E ) )
43 eqidd 2388 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C ) )
44 eqidd 2388 . . . . 5  |-  ( ph  ->  ( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) )  =  ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) )
45 oveq2 6028 . . . . 5  |-  ( y  =  C  ->  (
1  /  y )  =  ( 1  /  C ) )
4610, 43, 44, 45fmptco 5840 . . . 4  |-  ( ph  ->  ( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) )  o.  ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( 1  /  C ) ) )
4742, 46, 333brtr3d 4182 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( 1  /  C
) )  ~~> r  ( 1  /  E ) )
483, 8, 2, 47rlimmul 12365 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  (
1  /  C ) ) )  ~~> r  ( D  x.  ( 1  /  E ) ) )
493, 6, 7divrecd 9725 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( B  /  C )  =  ( B  x.  (
1  /  C ) ) )
5049mpteq2dva 4236 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( B  /  C
) )  =  ( x  e.  A  |->  ( B  x.  ( 1  /  C ) ) ) )
51 rlimcl 12224 . . . 4  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  D  e.  CC )
522, 51syl 16 . . 3  |-  ( ph  ->  D  e.  CC )
5352, 14, 15divrecd 9725 . 2  |-  ( ph  ->  ( D  /  E
)  =  ( D  x.  ( 1  /  E ) ) )
5448, 50, 533brtr4d 4183 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  /  C
) )  ~~> r  ( D  /  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649   E.wrex 2650    \ cdif 3260   ifcif 3682   {csn 3757   class class class wbr 4153    e. cmpt 4207    o. ccom 4822   ` cfv 5394  (class class class)co 6020   CCcc 8921   0cc0 8923   1c1 8924    x. cmul 8928    < clt 9053    <_ cle 9054    - cmin 9223    / cdiv 9609   2c2 9981   RR+crp 10544   abscabs 11966    ~~> r crli 12206
This theorem is referenced by:  logexprlim  20876  chebbnd2  21038  chto1lb  21039  pnt2  21174  pnt  21175
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-pm 6957  df-en 7046  df-dom 7047  df-sdom 7048  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-seq 11251  df-exp 11310  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-rlim 12210
  Copyright terms: Public domain W3C validator