MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdm Unicode version

Theorem rlimdm 12027
Description: Two ways to express that a function has a limit. (The expression  (  ~~> r  `  F ) is sometimes useful as a shorthand for "the unique limit of the function  F"). (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1  |-  ( ph  ->  F : A --> CC )
rlimuni.2  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
Assertion
Ref Expression
rlimdm  |-  ( ph  ->  ( F  e.  dom  ~~> r  <-> 
F  ~~> r  (  ~~> r  `  F ) ) )

Proof of Theorem rlimdm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 4876 . . . 4  |-  ( F  e.  dom  ~~> r  -> 
( F  e.  dom  ~~> r  <->  E. x  F  ~~> r  x ) )
21ibi 232 . . 3  |-  ( F  e.  dom  ~~> r  ->  E. x  F  ~~> r  x )
3 simpr 447 . . . . . 6  |-  ( (
ph  /\  F  ~~> r  x )  ->  F  ~~> r  x )
4 df-fv 5265 . . . . . . 7  |-  (  ~~> r  `  F )  =  ( iota y F  ~~> r  y )
5 vex 2793 . . . . . . . 8  |-  x  e. 
_V
6 rlimuni.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : A --> CC )
76adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  y ) )  ->  F : A --> CC )
8 rlimuni.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
98adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  y ) )  ->  sup ( A ,  RR* ,  <  )  =  +oo )
10 simprr 733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  y ) )  ->  F  ~~> r  y )
11 simprl 732 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  y ) )  ->  F  ~~> r  x )
127, 9, 10, 11rlimuni 12026 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  y ) )  ->  y  =  x )
1312expr 598 . . . . . . . . . . 11  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( F  ~~> r  y  ->  y  =  x ) )
14 breq2 4029 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( F 
~~> r  y  <->  F  ~~> r  x ) )
153, 14syl5ibrcom 213 . . . . . . . . . . 11  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( y  =  x  ->  F  ~~> r  y ) )
1613, 15impbid 183 . . . . . . . . . 10  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( F  ~~> r  y  <->  y  =  x ) )
1716adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  F  ~~> r  x )  /\  x  e.  _V )  ->  ( F 
~~> r  y  <->  y  =  x ) )
1817iota5 5241 . . . . . . . 8  |-  ( ( ( ph  /\  F  ~~> r  x )  /\  x  e.  _V )  ->  ( iota y F  ~~> r  y )  =  x )
195, 18mpan2 652 . . . . . . 7  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( iota y F  ~~> r  y )  =  x )
204, 19syl5eq 2329 . . . . . 6  |-  ( (
ph  /\  F  ~~> r  x )  ->  (  ~~> r  `  F )  =  x )
213, 20breqtrrd 4051 . . . . 5  |-  ( (
ph  /\  F  ~~> r  x )  ->  F  ~~> r  (  ~~> r  `  F ) )
2221ex 423 . . . 4  |-  ( ph  ->  ( F  ~~> r  x  ->  F  ~~> r  (  ~~> r  `  F ) ) )
2322exlimdv 1666 . . 3  |-  ( ph  ->  ( E. x  F  ~~> r  x  ->  F  ~~> r  (  ~~> r  `  F
) ) )
242, 23syl5 28 . 2  |-  ( ph  ->  ( F  e.  dom  ~~> r  ->  F  ~~> r  (  ~~> r  `  F ) ) )
25 rlimrel 11969 . . 3  |-  Rel  ~~> r
2625releldmi 4917 . 2  |-  ( F  ~~> r  (  ~~> r  `  F )  ->  F  e.  dom  ~~> r  )
2724, 26impbid1 194 1  |-  ( ph  ->  ( F  e.  dom  ~~> r  <-> 
F  ~~> r  (  ~~> r  `  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1530    = wceq 1625    e. wcel 1686   _Vcvv 2790   class class class wbr 4025   dom cdm 4691   iotacio 5219   -->wf 5253   ` cfv 5257   supcsup 7195   CCcc 8737    +oocpnf 8866   RR*cxr 8868    < clt 8869    ~~> r crli 11961
This theorem is referenced by:  caucvgrlem2  12149  caucvg  12153  dchrisum0lem3  20670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-sup 7196  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-seq 11049  df-exp 11107  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-rlim 11965
  Copyright terms: Public domain W3C validator