MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimmul Unicode version

Theorem rlimmul 12366
Description: Limit of the product of two converging functions. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
rlimadd.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
rlimadd.5  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
rlimadd.6  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
Assertion
Ref Expression
rlimmul  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  C
) )  ~~> r  ( D  x.  E ) )
Distinct variable groups:    x, A    x, D    ph, x    x, E
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem rlimmul
Dummy variables  w  v  y  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 rlimadd.5 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
31, 2rlimmptrcl 12329 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4 rlimadd.4 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
5 rlimadd.6 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
64, 5rlimmptrcl 12329 . 2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
7 rlimcl 12225 . . 3  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  D  e.  CC )
82, 7syl 16 . 2  |-  ( ph  ->  D  e.  CC )
9 rlimcl 12225 . . 3  |-  ( ( x  e.  A  |->  C )  ~~> r  E  ->  E  e.  CC )
105, 9syl 16 . 2  |-  ( ph  ->  E  e.  CC )
11 ax-mulf 9004 . . 3  |-  x.  :
( CC  X.  CC )
--> CC
1211a1i 11 . 2  |-  ( ph  ->  x.  : ( CC 
X.  CC ) --> CC )
13 simpr 448 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
148adantr 452 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  D  e.  CC )
1510adantr 452 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E  e.  CC )
16 mulcn2 12317 . . 3  |-  ( ( y  e.  RR+  /\  D  e.  CC  /\  E  e.  CC )  ->  E. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  D ) )  <  z  /\  ( abs `  ( v  -  E ) )  <  w )  -> 
( abs `  (
( u  x.  v
)  -  ( D  x.  E ) ) )  <  y ) )
1713, 14, 15, 16syl3anc 1184 . 2  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  D ) )  <  z  /\  ( abs `  ( v  -  E ) )  <  w )  -> 
( abs `  (
( u  x.  v
)  -  ( D  x.  E ) ) )  <  y ) )
183, 6, 8, 10, 2, 5, 12, 17rlimcn2 12312 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  C
) )  ~~> r  ( D  x.  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1717   A.wral 2650   E.wrex 2651   class class class wbr 4154    e. cmpt 4208    X. cxp 4817   -->wf 5391   ` cfv 5395  (class class class)co 6021   CCcc 8922    x. cmul 8929    < clt 9054    - cmin 9224   RR+crp 10545   abscabs 11967    ~~> r crli 12207
This theorem is referenced by:  rlimdiv  12367  caucvgr  12397  logexprlim  20877  dchrisum0lem1  21078
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-rp 10546  df-seq 11252  df-exp 11311  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-rlim 12211
  Copyright terms: Public domain W3C validator