MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimo1 Unicode version

Theorem rlimo1 12090
Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
rlimo1  |-  ( F  ~~> r  A  ->  F  e.  O ( 1 ) )

Proof of Theorem rlimo1
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimf 11975 . . . . . 6  |-  ( F  ~~> r  A  ->  F : dom  F --> CC )
2 ffvelrn 5663 . . . . . 6  |-  ( ( F : dom  F --> CC  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
31, 2sylan 457 . . . . 5  |-  ( ( F  ~~> r  A  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
43ralrimiva 2626 . . . 4  |-  ( F  ~~> r  A  ->  A. z  e.  dom  F ( F `
 z )  e.  CC )
5 1rp 10358 . . . . 5  |-  1  e.  RR+
65a1i 10 . . . 4  |-  ( F  ~~> r  A  ->  1  e.  RR+ )
71feqmptd 5575 . . . . 5  |-  ( F  ~~> r  A  ->  F  =  ( z  e. 
dom  F  |->  ( F `
 z ) ) )
8 id 19 . . . . 5  |-  ( F  ~~> r  A  ->  F  ~~> r  A )
97, 8eqbrtrrd 4045 . . . 4  |-  ( F  ~~> r  A  ->  (
z  e.  dom  F  |->  ( F `  z
) )  ~~> r  A
)
104, 6, 9rlimi 11987 . . 3  |-  ( F  ~~> r  A  ->  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  <  1 ) )
11 rlimcl 11977 . . . . . . . 8  |-  ( F  ~~> r  A  ->  A  e.  CC )
1211adantr 451 . . . . . . 7  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  A  e.  CC )
1312abscld 11918 . . . . . 6  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( abs `  A
)  e.  RR )
14 peano2re 8985 . . . . . 6  |-  ( ( abs `  A )  e.  RR  ->  (
( abs `  A
)  +  1 )  e.  RR )
1513, 14syl 15 . . . . 5  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( ( abs `  A
)  +  1 )  e.  RR )
163adantlr 695 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
1712adantr 451 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  A  e.  CC )
1816, 17abs2difd 11939 . . . . . . . . . 10  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <_  ( abs `  ( ( F `  z )  -  A
) ) )
1916abscld 11918 . . . . . . . . . . . 12  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( abs `  ( F `  z
) )  e.  RR )
2013adantr 451 . . . . . . . . . . . 12  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( abs `  A )  e.  RR )
2119, 20resubcld 9211 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  e.  RR )
2216, 17subcld 9157 . . . . . . . . . . . 12  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( F `  z )  -  A )  e.  CC )
2322abscld 11918 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( abs `  ( ( F `  z )  -  A
) )  e.  RR )
24 1re 8837 . . . . . . . . . . . 12  |-  1  e.  RR
2524a1i 10 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  1  e.  RR )
26 lelttr 8912 . . . . . . . . . . 11  |-  ( ( ( ( abs `  ( F `  z )
)  -  ( abs `  A ) )  e.  RR  /\  ( abs `  ( ( F `  z )  -  A
) )  e.  RR  /\  1  e.  RR )  ->  ( ( ( ( abs `  ( F `  z )
)  -  ( abs `  A ) )  <_ 
( abs `  (
( F `  z
)  -  A ) )  /\  ( abs `  ( ( F `  z )  -  A
) )  <  1
)  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <  1 ) )
2721, 23, 25, 26syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( (
( ( abs `  ( F `  z )
)  -  ( abs `  A ) )  <_ 
( abs `  (
( F `  z
)  -  A ) )  /\  ( abs `  ( ( F `  z )  -  A
) )  <  1
)  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <  1 ) )
2818, 27mpand 656 . . . . . . . . 9  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( ( F `
 z )  -  A ) )  <  1  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <  1 ) )
2919, 20, 25ltsubadd2d 9370 . . . . . . . . 9  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( (
( abs `  ( F `  z )
)  -  ( abs `  A ) )  <  1  <->  ( abs `  ( F `  z )
)  <  ( ( abs `  A )  +  1 ) ) )
3028, 29sylibd 205 . . . . . . . 8  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( ( F `
 z )  -  A ) )  <  1  ->  ( abs `  ( F `  z
) )  <  (
( abs `  A
)  +  1 ) ) )
3115adantr 451 . . . . . . . . 9  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  A )  +  1 )  e.  RR )
32 ltle 8910 . . . . . . . . 9  |-  ( ( ( abs `  ( F `  z )
)  e.  RR  /\  ( ( abs `  A
)  +  1 )  e.  RR )  -> 
( ( abs `  ( F `  z )
)  <  ( ( abs `  A )  +  1 )  ->  ( abs `  ( F `  z ) )  <_ 
( ( abs `  A
)  +  1 ) ) )
3319, 31, 32syl2anc 642 . . . . . . . 8  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( F `  z ) )  < 
( ( abs `  A
)  +  1 )  ->  ( abs `  ( F `  z )
)  <_  ( ( abs `  A )  +  1 ) ) )
3430, 33syld 40 . . . . . . 7  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( ( F `
 z )  -  A ) )  <  1  ->  ( abs `  ( F `  z
) )  <_  (
( abs `  A
)  +  1 ) ) )
3534imim2d 48 . . . . . 6  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( (
y  <_  z  ->  ( abs `  ( ( F `  z )  -  A ) )  <  1 )  -> 
( y  <_  z  ->  ( abs `  ( F `  z )
)  <_  ( ( abs `  A )  +  1 ) ) ) )
3635ralimdva 2621 . . . . 5  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  <  1 )  ->  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_ 
( ( abs `  A
)  +  1 ) ) ) )
37 breq2 4027 . . . . . . . 8  |-  ( w  =  ( ( abs `  A )  +  1 )  ->  ( ( abs `  ( F `  z ) )  <_  w 
<->  ( abs `  ( F `  z )
)  <_  ( ( abs `  A )  +  1 ) ) )
3837imbi2d 307 . . . . . . 7  |-  ( w  =  ( ( abs `  A )  +  1 )  ->  ( (
y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w )  <->  ( y  <_  z  ->  ( abs `  ( F `  z
) )  <_  (
( abs `  A
)  +  1 ) ) ) )
3938ralbidv 2563 . . . . . 6  |-  ( w  =  ( ( abs `  A )  +  1 )  ->  ( A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w )  <->  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_ 
( ( abs `  A
)  +  1 ) ) ) )
4039rspcev 2884 . . . . 5  |-  ( ( ( ( abs `  A
)  +  1 )  e.  RR  /\  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  ( ( abs `  A )  +  1 ) ) )  ->  E. w  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  ( F `  z )
)  <_  w )
)
4115, 36, 40ee12an 1353 . . . 4  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  <  1 )  ->  E. w  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_  w ) ) )
4241reximdva 2655 . . 3  |-  ( F  ~~> r  A  ->  ( E. y  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  A ) )  <  1 )  ->  E. y  e.  RR  E. w  e.  RR  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w ) ) )
4310, 42mpd 14 . 2  |-  ( F  ~~> r  A  ->  E. y  e.  RR  E. w  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_  w ) )
44 rlimss 11976 . . 3  |-  ( F  ~~> r  A  ->  dom  F 
C_  RR )
45 elo12 12001 . . 3  |-  ( ( F : dom  F --> CC  /\  dom  F  C_  RR )  ->  ( F  e.  O ( 1 )  <->  E. y  e.  RR  E. w  e.  RR  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w ) ) )
461, 44, 45syl2anc 642 . 2  |-  ( F  ~~> r  A  ->  ( F  e.  O (
1 )  <->  E. y  e.  RR  E. w  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_  w ) ) )
4743, 46mpbird 223 1  |-  ( F  ~~> r  A  ->  F  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    - cmin 9037   RR+crp 10354   abscabs 11719    ~~> r crli 11959   O ( 1 )co1 11960
This theorem is referenced by:  rlimdmo1  12091  o1const  12093  chebbnd2  20626  chto1lb  20627  chpo1ub  20629  vmadivsum  20631  dchrvmasumlem2  20647  dchrisum0lem1  20665  dchrisum0lem2a  20666  mudivsum  20679  mulog2sumlem2  20684  vmalogdivsum2  20687  2vmadivsumlem  20689  selberglem2  20695  selberg2lem  20699  selberg4lem1  20709  pntrsumo1  20714  pntrlog2bndlem2  20727  pntrlog2bndlem4  20729  pntrlog2bndlem5  20730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-rlim 11963  df-o1 11964
  Copyright terms: Public domain W3C validator