MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimo1 Unicode version

Theorem rlimo1 12055
Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
rlimo1  |-  ( F  ~~> r  A  ->  F  e.  O ( 1 ) )

Proof of Theorem rlimo1
StepHypRef Expression
1 rlimf 11940 . . . . . 6  |-  ( F  ~~> r  A  ->  F : dom  F --> CC )
2 ffvelrn 5597 . . . . . 6  |-  ( ( F : dom  F --> CC  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
31, 2sylan 459 . . . . 5  |-  ( ( F  ~~> r  A  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
43ralrimiva 2601 . . . 4  |-  ( F  ~~> r  A  ->  A. z  e.  dom  F ( F `
 z )  e.  CC )
5 1rp 10325 . . . . 5  |-  1  e.  RR+
65a1i 12 . . . 4  |-  ( F  ~~> r  A  ->  1  e.  RR+ )
71feqmptd 5509 . . . . 5  |-  ( F  ~~> r  A  ->  F  =  ( z  e. 
dom  F  |->  ( F `
 z ) ) )
8 id 21 . . . . 5  |-  ( F  ~~> r  A  ->  F  ~~> r  A )
97, 8eqbrtrrd 4019 . . . 4  |-  ( F  ~~> r  A  ->  (
z  e.  dom  F  |->  ( F `  z
) )  ~~> r  A
)
104, 6, 9rlimi 11952 . . 3  |-  ( F  ~~> r  A  ->  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  <  1 ) )
11 rlimcl 11942 . . . . . . . 8  |-  ( F  ~~> r  A  ->  A  e.  CC )
1211adantr 453 . . . . . . 7  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  A  e.  CC )
1312abscld 11883 . . . . . 6  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( abs `  A
)  e.  RR )
14 peano2re 8953 . . . . . 6  |-  ( ( abs `  A )  e.  RR  ->  (
( abs `  A
)  +  1 )  e.  RR )
1513, 14syl 17 . . . . 5  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( ( abs `  A
)  +  1 )  e.  RR )
163adantlr 698 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
1712adantr 453 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  A  e.  CC )
1816, 17abs2difd 11904 . . . . . . . . . 10  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <_  ( abs `  ( ( F `  z )  -  A
) ) )
1916abscld 11883 . . . . . . . . . . . 12  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( abs `  ( F `  z
) )  e.  RR )
2013adantr 453 . . . . . . . . . . . 12  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( abs `  A )  e.  RR )
2119, 20resubcld 9179 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  e.  RR )
2216, 17subcld 9125 . . . . . . . . . . . 12  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( F `  z )  -  A )  e.  CC )
2322abscld 11883 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( abs `  ( ( F `  z )  -  A
) )  e.  RR )
24 1re 8805 . . . . . . . . . . . 12  |-  1  e.  RR
2524a1i 12 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  1  e.  RR )
26 lelttr 8880 . . . . . . . . . . 11  |-  ( ( ( ( abs `  ( F `  z )
)  -  ( abs `  A ) )  e.  RR  /\  ( abs `  ( ( F `  z )  -  A
) )  e.  RR  /\  1  e.  RR )  ->  ( ( ( ( abs `  ( F `  z )
)  -  ( abs `  A ) )  <_ 
( abs `  (
( F `  z
)  -  A ) )  /\  ( abs `  ( ( F `  z )  -  A
) )  <  1
)  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <  1 ) )
2721, 23, 25, 26syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( (
( ( abs `  ( F `  z )
)  -  ( abs `  A ) )  <_ 
( abs `  (
( F `  z
)  -  A ) )  /\  ( abs `  ( ( F `  z )  -  A
) )  <  1
)  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <  1 ) )
2818, 27mpand 659 . . . . . . . . 9  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( ( F `
 z )  -  A ) )  <  1  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <  1 ) )
2919, 20, 25ltsubadd2d 9338 . . . . . . . . 9  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( (
( abs `  ( F `  z )
)  -  ( abs `  A ) )  <  1  <->  ( abs `  ( F `  z )
)  <  ( ( abs `  A )  +  1 ) ) )
3028, 29sylibd 207 . . . . . . . 8  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( ( F `
 z )  -  A ) )  <  1  ->  ( abs `  ( F `  z
) )  <  (
( abs `  A
)  +  1 ) ) )
3115adantr 453 . . . . . . . . 9  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  A )  +  1 )  e.  RR )
32 ltle 8878 . . . . . . . . 9  |-  ( ( ( abs `  ( F `  z )
)  e.  RR  /\  ( ( abs `  A
)  +  1 )  e.  RR )  -> 
( ( abs `  ( F `  z )
)  <  ( ( abs `  A )  +  1 )  ->  ( abs `  ( F `  z ) )  <_ 
( ( abs `  A
)  +  1 ) ) )
3319, 31, 32syl2anc 645 . . . . . . . 8  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( F `  z ) )  < 
( ( abs `  A
)  +  1 )  ->  ( abs `  ( F `  z )
)  <_  ( ( abs `  A )  +  1 ) ) )
3430, 33syld 42 . . . . . . 7  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( ( F `
 z )  -  A ) )  <  1  ->  ( abs `  ( F `  z
) )  <_  (
( abs `  A
)  +  1 ) ) )
3534imim2d 50 . . . . . 6  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( (
y  <_  z  ->  ( abs `  ( ( F `  z )  -  A ) )  <  1 )  -> 
( y  <_  z  ->  ( abs `  ( F `  z )
)  <_  ( ( abs `  A )  +  1 ) ) ) )
3635ralimdva 2596 . . . . 5  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  <  1 )  ->  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_ 
( ( abs `  A
)  +  1 ) ) ) )
37 breq2 4001 . . . . . . . 8  |-  ( w  =  ( ( abs `  A )  +  1 )  ->  ( ( abs `  ( F `  z ) )  <_  w 
<->  ( abs `  ( F `  z )
)  <_  ( ( abs `  A )  +  1 ) ) )
3837imbi2d 309 . . . . . . 7  |-  ( w  =  ( ( abs `  A )  +  1 )  ->  ( (
y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w )  <->  ( y  <_  z  ->  ( abs `  ( F `  z
) )  <_  (
( abs `  A
)  +  1 ) ) ) )
3938ralbidv 2538 . . . . . 6  |-  ( w  =  ( ( abs `  A )  +  1 )  ->  ( A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w )  <->  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_ 
( ( abs `  A
)  +  1 ) ) ) )
4039rcla4ev 2859 . . . . 5  |-  ( ( ( ( abs `  A
)  +  1 )  e.  RR  /\  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  ( ( abs `  A )  +  1 ) ) )  ->  E. w  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  ( F `  z )
)  <_  w )
)
4115, 36, 40ee12an 1359 . . . 4  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  <  1 )  ->  E. w  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_  w ) ) )
4241reximdva 2630 . . 3  |-  ( F  ~~> r  A  ->  ( E. y  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  A ) )  <  1 )  ->  E. y  e.  RR  E. w  e.  RR  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w ) ) )
4310, 42mpd 16 . 2  |-  ( F  ~~> r  A  ->  E. y  e.  RR  E. w  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_  w ) )
44 rlimss 11941 . . 3  |-  ( F  ~~> r  A  ->  dom  F 
C_  RR )
45 elo12 11966 . . 3  |-  ( ( F : dom  F --> CC  /\  dom  F  C_  RR )  ->  ( F  e.  O ( 1 )  <->  E. y  e.  RR  E. w  e.  RR  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w ) ) )
461, 44, 45syl2anc 645 . 2  |-  ( F  ~~> r  A  ->  ( F  e.  O (
1 )  <->  E. y  e.  RR  E. w  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_  w ) ) )
4743, 46mpbird 225 1  |-  ( F  ~~> r  A  ->  F  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   E.wrex 2519    C_ wss 3127   class class class wbr 3997    e. cmpt 4051   dom cdm 4661   -->wf 4669   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704   1c1 8706    + caddc 8708    < clt 8835    <_ cle 8836    - cmin 9005   RR+crp 10321   abscabs 11684    ~~> r crli 11924   O ( 1 )co1 11925
This theorem is referenced by:  rlimdmo1  12056  o1const  12058  chebbnd2  20588  chto1lb  20589  chpo1ub  20591  vmadivsum  20593  dchrvmasumlem2  20609  dchrisum0lem1  20627  dchrisum0lem2a  20628  mudivsum  20641  mulog2sumlem2  20646  vmalogdivsum2  20649  2vmadivsumlem  20651  selberglem2  20657  selberg2lem  20661  selberg4lem1  20671  pntrsumo1  20676  pntrlog2bndlem2  20689  pntrlog2bndlem4  20691  pntrlog2bndlem5  20692
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-pm 6743  df-en 6832  df-dom 6833  df-sdom 6834  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-rp 10322  df-ico 10628  df-seq 11013  df-exp 11071  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-rlim 11928  df-o1 11929
  Copyright terms: Public domain W3C validator