MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimpm Unicode version

Theorem rlimpm 12282
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimpm  |-  ( F  ~~> r  A  ->  F  e.  ( CC  ^pm  RR ) )

Proof of Theorem rlimpm
Dummy variables  w  f  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rlim 12271 . . . . 5  |-  ~~> r  =  { <. f ,  x >.  |  ( ( f  e.  ( CC  ^pm  RR )  /\  x  e.  CC )  /\  A. y  e.  RR+  E. z  e.  RR  A. w  e. 
dom  f ( z  <_  w  ->  ( abs `  ( ( f `
 w )  -  x ) )  < 
y ) ) }
2 opabssxp 4941 . . . . 5  |-  { <. f ,  x >.  |  ( ( f  e.  ( CC  ^pm  RR )  /\  x  e.  CC )  /\  A. y  e.  RR+  E. z  e.  RR  A. w  e.  dom  f
( z  <_  w  ->  ( abs `  (
( f `  w
)  -  x ) )  <  y ) ) }  C_  (
( CC  ^pm  RR )  X.  CC )
31, 2eqsstri 3370 . . . 4  |-  ~~> r  C_  ( ( CC  ^pm  RR )  X.  CC )
4 dmss 5060 . . . 4  |-  (  ~~> r  C_  ( ( CC  ^pm  RR )  X.  CC )  ->  dom  ~~> r  C_  dom  ( ( CC  ^pm  RR )  X.  CC ) )
53, 4ax-mp 8 . . 3  |-  dom  ~~> r  C_  dom  ( ( CC  ^pm  RR )  X.  CC )
6 dmxpss 5291 . . 3  |-  dom  (
( CC  ^pm  RR )  X.  CC )  C_  ( CC  ^pm  RR )
75, 6sstri 3349 . 2  |-  dom  ~~> r  C_  ( CC  ^pm  RR )
8 rlimrel 12275 . . 3  |-  Rel  ~~> r
98releldmi 5097 . 2  |-  ( F  ~~> r  A  ->  F  e.  dom  ~~> r  )
107, 9sseldi 3338 1  |-  ( F  ~~> r  A  ->  F  e.  ( CC  ^pm  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   class class class wbr 4204   {copab 4257    X. cxp 4867   dom cdm 4869   ` cfv 5445  (class class class)co 6072    ^pm cpm 7010   CCcc 8977   RRcr 8978    < clt 9109    <_ cle 9110    - cmin 9280   RR+crp 10601   abscabs 12027    ~~> r crli 12267
This theorem is referenced by:  rlimf  12283  rlimss  12284  rlimclim1  12327
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4875  df-rel 4876  df-cnv 4877  df-dm 4879  df-rlim 12271
  Copyright terms: Public domain W3C validator