MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimres Unicode version

Theorem rlimres 12026
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimres  |-  ( F  ~~> r  A  ->  ( F  |`  B )  ~~> r  A
)
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.

Proof of Theorem rlimres
StepHypRef Expression
1 inss1 3390 . . . . . . . 8  |-  ( dom 
F  i^i  B )  C_ 
dom  F
2 ssralv 3238 . . . . . . . 8  |-  ( ( dom  F  i^i  B
)  C_  dom  F  -> 
( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  < 
x )  ->  A. z  e.  ( dom  F  i^i  B ) ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  A
) )  <  x
) ) )
31, 2ax-mp 10 . . . . . . 7  |-  ( A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( ( F `  z )  -  A ) )  <  x )  ->  A. z  e.  ( dom  F  i^i  B ) ( y  <_  z  ->  ( abs `  (
( F `  z
)  -  A ) )  <  x ) )
43reximi 2651 . . . . . 6  |-  ( E. y  e.  RR  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( ( F `  z )  -  A ) )  <  x )  ->  E. y  e.  RR  A. z  e.  ( dom 
F  i^i  B )
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  A ) )  <  x ) )
54ralimi 2619 . . . . 5  |-  ( A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  < 
x )  ->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  ( dom  F  i^i  B ) ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  A
) )  <  x
) )
65anim2i 554 . . . 4  |-  ( ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  < 
x ) )  -> 
( A  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR  A. z  e.  ( dom  F  i^i  B ) ( y  <_  z  ->  ( abs `  ( ( F `  z )  -  A ) )  <  x ) ) )
76a1i 12 . . 3  |-  ( F  ~~> r  A  ->  (
( A  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( ( F `  z )  -  A ) )  <  x ) )  ->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  ( dom  F  i^i  B ) ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  A
) )  <  x
) ) ) )
8 rlimf 11969 . . . 4  |-  ( F  ~~> r  A  ->  F : dom  F --> CC )
9 rlimss 11970 . . . 4  |-  ( F  ~~> r  A  ->  dom  F 
C_  RR )
10 eqidd 2285 . . . 4  |-  ( ( F  ~~> r  A  /\  z  e.  dom  F )  ->  ( F `  z )  =  ( F `  z ) )
118, 9, 10rlim 11963 . . 3  |-  ( F  ~~> r  A  ->  ( F 
~~> r  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  < 
x ) ) ) )
12 fssres 5373 . . . . . 6  |-  ( ( F : dom  F --> CC  /\  ( dom  F  i^i  B )  C_  dom  F )  ->  ( F  |`  ( dom  F  i^i  B ) ) : ( dom  F  i^i  B
) --> CC )
138, 1, 12sylancl 645 . . . . 5  |-  ( F  ~~> r  A  ->  ( F  |`  ( dom  F  i^i  B ) ) : ( dom  F  i^i  B ) --> CC )
14 resres 4967 . . . . . . 7  |-  ( ( F  |`  dom  F )  |`  B )  =  ( F  |`  ( dom  F  i^i  B ) )
15 ffn 5354 . . . . . . . . 9  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
16 fnresdm 5318 . . . . . . . . 9  |-  ( F  Fn  dom  F  -> 
( F  |`  dom  F
)  =  F )
178, 15, 163syl 20 . . . . . . . 8  |-  ( F  ~~> r  A  ->  ( F  |`  dom  F )  =  F )
1817reseq1d 4953 . . . . . . 7  |-  ( F  ~~> r  A  ->  (
( F  |`  dom  F
)  |`  B )  =  ( F  |`  B ) )
1914, 18syl5eqr 2330 . . . . . 6  |-  ( F  ~~> r  A  ->  ( F  |`  ( dom  F  i^i  B ) )  =  ( F  |`  B ) )
2019feq1d 5344 . . . . 5  |-  ( F  ~~> r  A  ->  (
( F  |`  ( dom  F  i^i  B ) ) : ( dom 
F  i^i  B ) --> CC 
<->  ( F  |`  B ) : ( dom  F  i^i  B ) --> CC ) )
2113, 20mpbid 203 . . . 4  |-  ( F  ~~> r  A  ->  ( F  |`  B ) : ( dom  F  i^i  B ) --> CC )
221, 9syl5ss 3191 . . . 4  |-  ( F  ~~> r  A  ->  ( dom  F  i^i  B ) 
C_  RR )
23 inss2 3391 . . . . . . 7  |-  ( dom 
F  i^i  B )  C_  B
2423sseli 3177 . . . . . 6  |-  ( z  e.  ( dom  F  i^i  B )  ->  z  e.  B )
25 fvres 5502 . . . . . 6  |-  ( z  e.  B  ->  (
( F  |`  B ) `
 z )  =  ( F `  z
) )
2624, 25syl 17 . . . . 5  |-  ( z  e.  ( dom  F  i^i  B )  ->  (
( F  |`  B ) `
 z )  =  ( F `  z
) )
2726adantl 454 . . . 4  |-  ( ( F  ~~> r  A  /\  z  e.  ( dom  F  i^i  B ) )  ->  ( ( F  |`  B ) `  z
)  =  ( F `
 z ) )
2821, 22, 27rlim 11963 . . 3  |-  ( F  ~~> r  A  ->  (
( F  |`  B )  ~~> r  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  ( dom  F  i^i  B ) ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  A
) )  <  x
) ) ) )
297, 11, 283imtr4d 261 . 2  |-  ( F  ~~> r  A  ->  ( F 
~~> r  A  ->  ( F  |`  B )  ~~> r  A
) )
3029pm2.43i 45 1  |-  ( F  ~~> r  A  ->  ( F  |`  B )  ~~> r  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685   A.wral 2544   E.wrex 2545    i^i cin 3152    C_ wss 3153   class class class wbr 4024   dom cdm 4688    |` cres 4690    Fn wfn 5216   -->wf 5217   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731    < clt 8862    <_ cle 8863    - cmin 9032   RR+crp 10349   abscabs 11713    ~~> r crli 11953
This theorem is referenced by:  rlimres2  12029  pnt  20757
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-pm 6770  df-rlim 11957
  Copyright terms: Public domain W3C validator