MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsub Unicode version

Theorem rlimsub 12113
Description: Limit of the difference of two converging functions. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
rlimadd.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
rlimadd.5  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
rlimadd.6  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
Assertion
Ref Expression
rlimsub  |-  ( ph  ->  ( x  e.  A  |->  ( B  -  C
) )  ~~> r  ( D  -  E ) )
Distinct variable groups:    x, A    x, D    ph, x    x, E
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem rlimsub
Dummy variables  w  v  y  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 rlimadd.5 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
31, 2rlimmptrcl 12077 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4 rlimadd.4 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
5 rlimadd.6 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
64, 5rlimmptrcl 12077 . 2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
7 rlimcl 11973 . . 3  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  D  e.  CC )
82, 7syl 15 . 2  |-  ( ph  ->  D  e.  CC )
9 rlimcl 11973 . . 3  |-  ( ( x  e.  A  |->  C )  ~~> r  E  ->  E  e.  CC )
105, 9syl 15 . 2  |-  ( ph  ->  E  e.  CC )
11 subf 9049 . . 3  |-  -  :
( CC  X.  CC )
--> CC
1211a1i 10 . 2  |-  ( ph  ->  -  : ( CC 
X.  CC ) --> CC )
13 simpr 447 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
148adantr 451 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  D  e.  CC )
1510adantr 451 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E  e.  CC )
16 subcn2 12064 . . 3  |-  ( ( y  e.  RR+  /\  D  e.  CC  /\  E  e.  CC )  ->  E. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  D ) )  <  z  /\  ( abs `  ( v  -  E ) )  <  w )  -> 
( abs `  (
( u  -  v
)  -  ( D  -  E ) ) )  <  y ) )
1713, 14, 15, 16syl3anc 1182 . 2  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  D ) )  <  z  /\  ( abs `  ( v  -  E ) )  <  w )  -> 
( abs `  (
( u  -  v
)  -  ( D  -  E ) ) )  <  y ) )
183, 6, 8, 10, 2, 5, 12, 17rlimcn2 12060 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  -  C
) )  ~~> r  ( D  -  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1685   A.wral 2544   E.wrex 2545   class class class wbr 4024    e. cmpt 4078    X. cxp 4686   -->wf 5217   ` cfv 5221  (class class class)co 5820   CCcc 8731    < clt 8863    - cmin 9033   RR+crp 10350   abscabs 11715    ~~> r crli 11955
This theorem is referenced by:  rlimneg  12116  rlimle  12117  dvfsumrlim2  19375  logexprlim  20460
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-pm 6771  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-seq 11043  df-exp 11101  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-rlim 11959
  Copyright terms: Public domain W3C validator