MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsub Structured version   Unicode version

Theorem rlimsub 12437
Description: Limit of the difference of two converging functions. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
rlimadd.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
rlimadd.5  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
rlimadd.6  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
Assertion
Ref Expression
rlimsub  |-  ( ph  ->  ( x  e.  A  |->  ( B  -  C
) )  ~~> r  ( D  -  E ) )
Distinct variable groups:    x, A    x, D    ph, x    x, E
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem rlimsub
Dummy variables  w  v  y  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 rlimadd.5 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
31, 2rlimmptrcl 12401 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4 rlimadd.4 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
5 rlimadd.6 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
64, 5rlimmptrcl 12401 . 2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
7 rlimcl 12297 . . 3  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  D  e.  CC )
82, 7syl 16 . 2  |-  ( ph  ->  D  e.  CC )
9 rlimcl 12297 . . 3  |-  ( ( x  e.  A  |->  C )  ~~> r  E  ->  E  e.  CC )
105, 9syl 16 . 2  |-  ( ph  ->  E  e.  CC )
11 subf 9307 . . 3  |-  -  :
( CC  X.  CC )
--> CC
1211a1i 11 . 2  |-  ( ph  ->  -  : ( CC 
X.  CC ) --> CC )
13 simpr 448 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
148adantr 452 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  D  e.  CC )
1510adantr 452 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E  e.  CC )
16 subcn2 12388 . . 3  |-  ( ( y  e.  RR+  /\  D  e.  CC  /\  E  e.  CC )  ->  E. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  D ) )  <  z  /\  ( abs `  ( v  -  E ) )  <  w )  -> 
( abs `  (
( u  -  v
)  -  ( D  -  E ) ) )  <  y ) )
1713, 14, 15, 16syl3anc 1184 . 2  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  D ) )  <  z  /\  ( abs `  ( v  -  E ) )  <  w )  -> 
( abs `  (
( u  -  v
)  -  ( D  -  E ) ) )  <  y ) )
183, 6, 8, 10, 2, 5, 12, 17rlimcn2 12384 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  -  C
) )  ~~> r  ( D  -  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725   A.wral 2705   E.wrex 2706   class class class wbr 4212    e. cmpt 4266    X. cxp 4876   -->wf 5450   ` cfv 5454  (class class class)co 6081   CCcc 8988    < clt 9120    - cmin 9291   RR+crp 10612   abscabs 12039    ~~> r crli 12279
This theorem is referenced by:  rlimneg  12440  rlimle  12441  dvfsumrlim2  19916  logexprlim  21009
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-rlim 12283
  Copyright terms: Public domain W3C validator