MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimuni Unicode version

Theorem rlimuni 12040
Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1  |-  ( ph  ->  F : A --> CC )
rlimuni.2  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
rlimuni.3  |-  ( ph  ->  F  ~~> r  B )
rlimuni.4  |-  ( ph  ->  F  ~~> r  C )
Assertion
Ref Expression
rlimuni  |-  ( ph  ->  B  =  C )

Proof of Theorem rlimuni
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimuni.3 . . . . . . . . . . . 12  |-  ( ph  ->  F  ~~> r  B )
2 rlimcl 11993 . . . . . . . . . . . 12  |-  ( F  ~~> r  B  ->  B  e.  CC )
31, 2syl 15 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
43ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  B  e.  CC )
5 rlimuni.4 . . . . . . . . . . . 12  |-  ( ph  ->  F  ~~> r  C )
6 rlimcl 11993 . . . . . . . . . . . 12  |-  ( F  ~~> r  C  ->  C  e.  CC )
75, 6syl 15 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  CC )
87ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  C  e.  CC )
94, 8subcld 9173 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  ( B  -  C )  e.  CC )
109abscld 11934 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  ( abs `  ( B  -  C ) )  e.  RR )
1110ltnrd 8969 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  -.  ( abs `  ( B  -  C ) )  <  ( abs `  ( B  -  C )
) )
12 rlimuni.1 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : A --> CC )
13 ffvelrn 5679 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> CC  /\  k  e.  A )  ->  ( F `  k
)  e.  CC )
1412, 13sylan 457 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  CC )
1514adantlr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  ( F `  k )  e.  CC )
1615, 4abssubd 11951 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  ( abs `  ( ( F `
 k )  -  B ) )  =  ( abs `  ( B  -  ( F `  k ) ) ) )
1716breq1d 4049 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  <->  ( abs `  ( B  -  ( F `  k )
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) )
1817anbi1d 685 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) )  <->  ( ( abs `  ( B  -  ( F `  k ) ) )  <  (
( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) )
19 abs3lem 11838 . . . . . . . . . . . 12  |-  ( ( ( B  e.  CC  /\  C  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( B  -  C
) )  e.  RR ) )  ->  (
( ( abs `  ( B  -  ( F `  k ) ) )  <  ( ( abs `  ( B  -  C
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) )  ->  ( abs `  ( B  -  C
) )  <  ( abs `  ( B  -  C ) ) ) )
204, 8, 15, 10, 19syl22anc 1183 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( ( abs `  ( B  -  ( F `  k ) ) )  <  ( ( abs `  ( B  -  C
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) )  ->  ( abs `  ( B  -  C
) )  <  ( abs `  ( B  -  C ) ) ) )
2118, 20sylbid 206 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) )  ->  ( abs `  ( B  -  C ) )  < 
( abs `  ( B  -  C )
) ) )
2221imim2d 48 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) )  -> 
( j  <_  k  ->  ( abs `  ( B  -  C )
)  <  ( abs `  ( B  -  C
) ) ) ) )
2322com23 72 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
j  <_  k  ->  ( ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) )  -> 
( abs `  ( B  -  C )
)  <  ( abs `  ( B  -  C
) ) ) ) )
2423imp3a 420 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( j  <_  k  /\  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) )  ->  ( abs `  ( B  -  C )
)  <  ( abs `  ( B  -  C
) ) ) )
2511, 24mtod 168 . . . . . 6  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  -.  ( j  <_  k  /\  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
2625nrexdv 2659 . . . . 5  |-  ( (
ph  /\  j  e.  RR )  ->  -.  E. k  e.  A  (
j  <_  k  /\  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
27 r19.29r 2697 . . . . 5  |-  ( ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  (
j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) )  ->  E. k  e.  A  ( j  <_  k  /\  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
2826, 27nsyl 113 . . . 4  |-  ( (
ph  /\  j  e.  RR )  ->  -.  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  (
j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
2928nrexdv 2659 . . 3  |-  ( ph  ->  -.  E. j  e.  RR  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) ) )
30 rlimuni.2 . . . . 5  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
31 fdm 5409 . . . . . . . . 9  |-  ( F : A --> CC  ->  dom 
F  =  A )
3212, 31syl 15 . . . . . . . 8  |-  ( ph  ->  dom  F  =  A )
33 rlimss 11992 . . . . . . . . 9  |-  ( F  ~~> r  B  ->  dom  F 
C_  RR )
341, 33syl 15 . . . . . . . 8  |-  ( ph  ->  dom  F  C_  RR )
3532, 34eqsstr3d 3226 . . . . . . 7  |-  ( ph  ->  A  C_  RR )
36 ressxr 8892 . . . . . . 7  |-  RR  C_  RR*
3735, 36syl6ss 3204 . . . . . 6  |-  ( ph  ->  A  C_  RR* )
38 supxrunb1 10654 . . . . . 6  |-  ( A 
C_  RR*  ->  ( A. j  e.  RR  E. k  e.  A  j  <_  k  <->  sup ( A ,  RR* ,  <  )  =  +oo ) )
3937, 38syl 15 . . . . 5  |-  ( ph  ->  ( A. j  e.  RR  E. k  e.  A  j  <_  k  <->  sup ( A ,  RR* ,  <  )  =  +oo ) )
4030, 39mpbird 223 . . . 4  |-  ( ph  ->  A. j  e.  RR  E. k  e.  A  j  <_  k )
41 r19.29 2696 . . . . 5  |-  ( ( A. j  e.  RR  E. k  e.  A  j  <_  k  /\  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) )  ->  E. j  e.  RR  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) ) )
4241ex 423 . . . 4  |-  ( A. j  e.  RR  E. k  e.  A  j  <_  k  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) )  ->  E. j  e.  RR  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) ) ) )
4340, 42syl 15 . . 3  |-  ( ph  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) )  ->  E. j  e.  RR  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) ) ) )
4429, 43mtod 168 . 2  |-  ( ph  ->  -.  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) )
4512adantr 451 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  F : A
--> CC )
4613ralrimiva 2639 . . . . . . 7  |-  ( F : A --> CC  ->  A. k  e.  A  ( F `  k )  e.  CC )
4745, 46syl 15 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  A. k  e.  A  ( F `  k )  e.  CC )
483adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  C )  ->  B  e.  CC )
497adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  C )  ->  C  e.  CC )
5048, 49subcld 9173 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  C )  ->  ( B  -  C )  e.  CC )
51 simpr 447 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  C )  ->  B  =/=  C )
52 subeq0 9089 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( ( B  -  C )  =  0  <-> 
B  =  C ) )
5348, 49, 52syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  B  =/=  C )  ->  ( ( B  -  C )  =  0  <->  B  =  C ) )
5453necon3bid 2494 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  C )  ->  ( ( B  -  C )  =/=  0  <->  B  =/=  C
) )
5551, 54mpbird 223 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  C )  ->  ( B  -  C )  =/=  0
)
5650, 55absrpcld 11946 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  ( abs `  ( B  -  C
) )  e.  RR+ )
5756rphalfcld 10418 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  ( ( abs `  ( B  -  C ) )  / 
2 )  e.  RR+ )
5845feqmptd 5591 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  F  =  ( k  e.  A  |->  ( F `  k
) ) )
591adantr 451 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  F  ~~> r  B
)
6058, 59eqbrtrrd 4061 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  ( k  e.  A  |->  ( F `
 k ) )  ~~> r  B )
6147, 57, 60rlimi 12003 . . . . 5  |-  ( (
ph  /\  B  =/=  C )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) )
625adantr 451 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  F  ~~> r  C
)
6358, 62eqbrtrrd 4061 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  ( k  e.  A  |->  ( F `
 k ) )  ~~> r  C )
6447, 57, 63rlimi 12003 . . . . 5  |-  ( (
ph  /\  B  =/=  C )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) )
6535adantr 451 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  A  C_  RR )
66 rexanre 11846 . . . . . 6  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) )  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) ) ) )
6765, 66syl 15 . . . . 5  |-  ( (
ph  /\  B  =/=  C )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) )  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) ) ) )
6861, 64, 67mpbir2and 888 . . . 4  |-  ( (
ph  /\  B  =/=  C )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) )
6968ex 423 . . 3  |-  ( ph  ->  ( B  =/=  C  ->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
7069necon1bd 2527 . 2  |-  ( ph  ->  ( -.  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) )  ->  B  =  C ) )
7144, 70mpd 14 1  |-  ( ph  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   -->wf 5267   ` cfv 5271  (class class class)co 5874   supcsup 7209   CCcc 8751   RRcr 8752   0cc0 8753    +oocpnf 8880   RR*cxr 8882    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   2c2 9811   abscabs 11735    ~~> r crli 11975
This theorem is referenced by:  rlimdm  12041  rlimdmafv  28145
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-rlim 11979
  Copyright terms: Public domain W3C validator