MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimuni Unicode version

Theorem rlimuni 12024
Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1  |-  ( ph  ->  F : A --> CC )
rlimuni.2  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
rlimuni.3  |-  ( ph  ->  F  ~~> r  B )
rlimuni.4  |-  ( ph  ->  F  ~~> r  C )
Assertion
Ref Expression
rlimuni  |-  ( ph  ->  B  =  C )

Proof of Theorem rlimuni
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimuni.3 . . . . . . . . . . . 12  |-  ( ph  ->  F  ~~> r  B )
2 rlimcl 11977 . . . . . . . . . . . 12  |-  ( F  ~~> r  B  ->  B  e.  CC )
31, 2syl 15 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
43ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  B  e.  CC )
5 rlimuni.4 . . . . . . . . . . . 12  |-  ( ph  ->  F  ~~> r  C )
6 rlimcl 11977 . . . . . . . . . . . 12  |-  ( F  ~~> r  C  ->  C  e.  CC )
75, 6syl 15 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  CC )
87ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  C  e.  CC )
94, 8subcld 9157 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  ( B  -  C )  e.  CC )
109abscld 11918 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  ( abs `  ( B  -  C ) )  e.  RR )
1110ltnrd 8953 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  -.  ( abs `  ( B  -  C ) )  <  ( abs `  ( B  -  C )
) )
12 rlimuni.1 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : A --> CC )
13 ffvelrn 5663 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> CC  /\  k  e.  A )  ->  ( F `  k
)  e.  CC )
1412, 13sylan 457 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  CC )
1514adantlr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  ( F `  k )  e.  CC )
1615, 4abssubd 11935 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  ( abs `  ( ( F `
 k )  -  B ) )  =  ( abs `  ( B  -  ( F `  k ) ) ) )
1716breq1d 4033 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  <->  ( abs `  ( B  -  ( F `  k )
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) )
1817anbi1d 685 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) )  <->  ( ( abs `  ( B  -  ( F `  k ) ) )  <  (
( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) )
19 abs3lem 11822 . . . . . . . . . . . 12  |-  ( ( ( B  e.  CC  /\  C  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( B  -  C
) )  e.  RR ) )  ->  (
( ( abs `  ( B  -  ( F `  k ) ) )  <  ( ( abs `  ( B  -  C
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) )  ->  ( abs `  ( B  -  C
) )  <  ( abs `  ( B  -  C ) ) ) )
204, 8, 15, 10, 19syl22anc 1183 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( ( abs `  ( B  -  ( F `  k ) ) )  <  ( ( abs `  ( B  -  C
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) )  ->  ( abs `  ( B  -  C
) )  <  ( abs `  ( B  -  C ) ) ) )
2118, 20sylbid 206 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) )  ->  ( abs `  ( B  -  C ) )  < 
( abs `  ( B  -  C )
) ) )
2221imim2d 48 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) )  -> 
( j  <_  k  ->  ( abs `  ( B  -  C )
)  <  ( abs `  ( B  -  C
) ) ) ) )
2322com23 72 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
j  <_  k  ->  ( ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) )  -> 
( abs `  ( B  -  C )
)  <  ( abs `  ( B  -  C
) ) ) ) )
2423imp3a 420 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( j  <_  k  /\  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) )  ->  ( abs `  ( B  -  C )
)  <  ( abs `  ( B  -  C
) ) ) )
2511, 24mtod 168 . . . . . 6  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  -.  ( j  <_  k  /\  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
2625nrexdv 2646 . . . . 5  |-  ( (
ph  /\  j  e.  RR )  ->  -.  E. k  e.  A  (
j  <_  k  /\  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
27 r19.29r 2684 . . . . 5  |-  ( ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  (
j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) )  ->  E. k  e.  A  ( j  <_  k  /\  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
2826, 27nsyl 113 . . . 4  |-  ( (
ph  /\  j  e.  RR )  ->  -.  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  (
j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
2928nrexdv 2646 . . 3  |-  ( ph  ->  -.  E. j  e.  RR  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) ) )
30 rlimuni.2 . . . . 5  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
31 fdm 5393 . . . . . . . . 9  |-  ( F : A --> CC  ->  dom 
F  =  A )
3212, 31syl 15 . . . . . . . 8  |-  ( ph  ->  dom  F  =  A )
33 rlimss 11976 . . . . . . . . 9  |-  ( F  ~~> r  B  ->  dom  F 
C_  RR )
341, 33syl 15 . . . . . . . 8  |-  ( ph  ->  dom  F  C_  RR )
3532, 34eqsstr3d 3213 . . . . . . 7  |-  ( ph  ->  A  C_  RR )
36 ressxr 8876 . . . . . . 7  |-  RR  C_  RR*
3735, 36syl6ss 3191 . . . . . 6  |-  ( ph  ->  A  C_  RR* )
38 supxrunb1 10638 . . . . . 6  |-  ( A 
C_  RR*  ->  ( A. j  e.  RR  E. k  e.  A  j  <_  k  <->  sup ( A ,  RR* ,  <  )  =  +oo ) )
3937, 38syl 15 . . . . 5  |-  ( ph  ->  ( A. j  e.  RR  E. k  e.  A  j  <_  k  <->  sup ( A ,  RR* ,  <  )  =  +oo ) )
4030, 39mpbird 223 . . . 4  |-  ( ph  ->  A. j  e.  RR  E. k  e.  A  j  <_  k )
41 r19.29 2683 . . . . 5  |-  ( ( A. j  e.  RR  E. k  e.  A  j  <_  k  /\  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) )  ->  E. j  e.  RR  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) ) )
4241ex 423 . . . 4  |-  ( A. j  e.  RR  E. k  e.  A  j  <_  k  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) )  ->  E. j  e.  RR  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) ) ) )
4340, 42syl 15 . . 3  |-  ( ph  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) )  ->  E. j  e.  RR  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) ) ) )
4429, 43mtod 168 . 2  |-  ( ph  ->  -.  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) )
4512adantr 451 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  F : A
--> CC )
4613ralrimiva 2626 . . . . . . 7  |-  ( F : A --> CC  ->  A. k  e.  A  ( F `  k )  e.  CC )
4745, 46syl 15 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  A. k  e.  A  ( F `  k )  e.  CC )
483adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  C )  ->  B  e.  CC )
497adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  C )  ->  C  e.  CC )
5048, 49subcld 9157 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  C )  ->  ( B  -  C )  e.  CC )
51 simpr 447 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  C )  ->  B  =/=  C )
52 subeq0 9073 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( ( B  -  C )  =  0  <-> 
B  =  C ) )
5348, 49, 52syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  B  =/=  C )  ->  ( ( B  -  C )  =  0  <->  B  =  C ) )
5453necon3bid 2481 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  C )  ->  ( ( B  -  C )  =/=  0  <->  B  =/=  C
) )
5551, 54mpbird 223 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  C )  ->  ( B  -  C )  =/=  0
)
5650, 55absrpcld 11930 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  ( abs `  ( B  -  C
) )  e.  RR+ )
5756rphalfcld 10402 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  ( ( abs `  ( B  -  C ) )  / 
2 )  e.  RR+ )
5845feqmptd 5575 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  F  =  ( k  e.  A  |->  ( F `  k
) ) )
591adantr 451 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  F  ~~> r  B
)
6058, 59eqbrtrrd 4045 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  ( k  e.  A  |->  ( F `
 k ) )  ~~> r  B )
6147, 57, 60rlimi 11987 . . . . 5  |-  ( (
ph  /\  B  =/=  C )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) )
625adantr 451 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  F  ~~> r  C
)
6358, 62eqbrtrrd 4045 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  ( k  e.  A  |->  ( F `
 k ) )  ~~> r  C )
6447, 57, 63rlimi 11987 . . . . 5  |-  ( (
ph  /\  B  =/=  C )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) )
6535adantr 451 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  A  C_  RR )
66 rexanre 11830 . . . . . 6  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) )  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) ) ) )
6765, 66syl 15 . . . . 5  |-  ( (
ph  /\  B  =/=  C )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) )  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) ) ) )
6861, 64, 67mpbir2and 888 . . . 4  |-  ( (
ph  /\  B  =/=  C )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) )
6968ex 423 . . 3  |-  ( ph  ->  ( B  =/=  C  ->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
7069necon1bd 2514 . 2  |-  ( ph  ->  ( -.  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) )  ->  B  =  C ) )
7144, 70mpd 14 1  |-  ( ph  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   2c2 9795   abscabs 11719    ~~> r crli 11959
This theorem is referenced by:  rlimdm  12025
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-rlim 11963
  Copyright terms: Public domain W3C validator