Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxycomplete Unicode version

Theorem rmxycomplete 26370
Description: The X and Y sequences taken together enumerate all solutions to the corresponding Pell equation in the right half-plane. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxycomplete  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  <->  E. n  e.  ZZ  ( X  =  ( A Xrm  n
)  /\  Y  =  ( A Yrm  n ) ) ) )
Distinct variable groups:    A, n    n, X    n, Y

Proof of Theorem rmxycomplete
StepHypRef Expression
1 rmspecnonsq 26360 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ( NN  \NN ) )
213ad2ant1 981 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( A ^ 2 )  -  1 )  e.  ( NN  \NN ) )
3 pellfund14b 26352 . . 3  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  <->  E. n  e.  ZZ  ( X  +  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( (PellFund `  ( ( A ^
2 )  -  1 ) ) ^ n
) ) )
42, 3syl 17 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  <->  E. n  e.  ZZ  ( X  +  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( (PellFund `  ( ( A ^
2 )  -  1 ) ) ^ n
) ) )
5 nn0re 9942 . . . . . 6  |-  ( X  e.  NN0  ->  X  e.  RR )
653ad2ant2 982 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  X  e.  RR )
7 rmspecpos 26369 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  RR+ )
87rpsqrcld 11860 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  RR+ )
98rpred 10358 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  RR )
1093ad2ant1 981 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  RR )
11 zre 9996 . . . . . . 7  |-  ( Y  e.  ZZ  ->  Y  e.  RR )
12113ad2ant3 983 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  Y  e.  RR )
1310, 12remulcld 8831 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y )  e.  RR )
146, 13readdcld 8830 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  e.  RR )
1514biantrurd 496 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  <->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  e.  RR  /\  E. x  e.  NN0  E. y  e.  ZZ  ( ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( x  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  y ) )  /\  ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
16 simpl2 964 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  ->  X  e.  NN0 )
17 simpl3 965 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  ->  Y  e.  ZZ )
18 eqidd 2259 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  -> 
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) ) )
19 simpr 449 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  -> 
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 )
20 oveq1 5799 . . . . . . . . 9  |-  ( x  =  X  ->  (
x  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  y ) )  =  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y ) ) )
2120eqeq2d 2269 . . . . . . . 8  |-  ( x  =  X  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  <->  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( X  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  y ) ) ) )
22 oveq1 5799 . . . . . . . . . 10  |-  ( x  =  X  ->  (
x ^ 2 )  =  ( X ^
2 ) )
2322oveq1d 5807 . . . . . . . . 9  |-  ( x  =  X  ->  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
y ^ 2 ) ) ) )
2423eqeq1d 2266 . . . . . . . 8  |-  ( x  =  X  ->  (
( ( x ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  1  <->  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) )
2521, 24anbi12d 694 . . . . . . 7  |-  ( x  =  X  ->  (
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  <->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y ) )  /\  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  1 ) ) )
26 oveq2 5800 . . . . . . . . . 10  |-  ( y  =  Y  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y )  =  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )
2726oveq2d 5808 . . . . . . . . 9  |-  ( y  =  Y  ->  ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  y ) )  =  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) ) )
2827eqeq2d 2269 . . . . . . . 8  |-  ( y  =  Y  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  <->  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( X  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  Y ) ) ) )
29 oveq1 5799 . . . . . . . . . . 11  |-  ( y  =  Y  ->  (
y ^ 2 )  =  ( Y ^
2 ) )
3029oveq2d 5808 . . . . . . . . . 10  |-  ( y  =  Y  ->  (
( ( A ^
2 )  -  1 )  x.  ( y ^ 2 ) )  =  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^ 2 ) ) )
3130oveq2d 5808 . . . . . . . . 9  |-  ( y  =  Y  ->  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  ( Y ^ 2 ) ) ) )
3231eqeq1d 2266 . . . . . . . 8  |-  ( y  =  Y  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  1  <->  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 ) )
3328, 32anbi12d 694 . . . . . . 7  |-  ( y  =  Y  ->  (
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  <->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  /\  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 ) ) )
3425, 33rcla42ev 2867 . . . . . 6  |-  ( ( X  e.  NN0  /\  Y  e.  ZZ  /\  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 ) )  ->  E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) )
3516, 17, 18, 19, 34syl112anc 1191 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  ->  E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) )
3635ex 425 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  ->  E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) ) )
37 rmspecsqrnq 26359 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
38373ad2ant1 981 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  ( CC  \  QQ ) )
3938adantr 453 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
40 nn0ssq 10292 . . . . . . . . . . 11  |-  NN0  C_  QQ
41 simp2 961 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  X  e.  NN0 )
4240, 41sseldi 3153 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  X  e.  QQ )
4342adantr 453 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  X  e.  QQ )
44 zq 10290 . . . . . . . . . . 11  |-  ( Y  e.  ZZ  ->  Y  e.  QQ )
45443ad2ant3 983 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  Y  e.  QQ )
4645adantr 453 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  Y  e.  QQ )
4740sseli 3151 . . . . . . . . . 10  |-  ( x  e.  NN0  ->  x  e.  QQ )
4847ad2antrl 711 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  x  e.  QQ )
49 zq 10290 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  QQ )
5049ad2antll 712 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  y  e.  QQ )
51 qirropth 26361 . . . . . . . . 9  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( X  e.  QQ  /\  Y  e.  QQ )  /\  ( x  e.  QQ  /\  y  e.  QQ ) )  -> 
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  <->  ( X  =  x  /\  Y  =  y ) ) )
5239, 43, 46, 48, 50, 51syl122anc 1196 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y ) )  <->  ( X  =  x  /\  Y  =  y ) ) )
5352biimpd 200 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y ) )  ->  ( X  =  x  /\  Y  =  y ) ) )
5453anim1d 549 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  -> 
( ( X  =  x  /\  Y  =  y )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) ) )
55 oveq1 5799 . . . . . . . . . 10  |-  ( X  =  x  ->  ( X ^ 2 )  =  ( x ^ 2 ) )
56 oveq1 5799 . . . . . . . . . . 11  |-  ( Y  =  y  ->  ( Y ^ 2 )  =  ( y ^ 2 ) )
5756oveq2d 5808 . . . . . . . . . 10  |-  ( Y  =  y  ->  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) )  =  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^ 2 ) ) )
5855, 57oveqan12d 5811 . . . . . . . . 9  |-  ( ( X  =  x  /\  Y  =  y )  ->  ( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^ 2 ) ) ) )
5958eqcomd 2263 . . . . . . . 8  |-  ( ( X  =  x  /\  Y  =  y )  ->  ( ( x ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^ 2 ) ) ) )
6059eqeq1d 2266 . . . . . . 7  |-  ( ( X  =  x  /\  Y  =  y )  ->  ( ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
y ^ 2 ) ) )  =  1  <-> 
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 ) )
6160biimpa 472 . . . . . 6  |-  ( ( ( X  =  x  /\  Y  =  y )  /\  ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  1 )  ->  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )
6254, 61syl6 31 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  -> 
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 ) )
6362rexlimdvva 2649 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  -> 
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 ) )
6436, 63impbid 185 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  <->  E. x  e.  NN0  E. y  e.  ZZ  ( ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( x  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  y ) )  /\  ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
y ^ 2 ) ) )  =  1 ) ) )
65 elpell14qr 26302 . . . 4  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  <->  ( ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  e.  RR  /\ 
E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) ) ) )
662, 65syl 17 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  <->  ( ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  e.  RR  /\ 
E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) ) ) )
6715, 64, 663bitr4d 278 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  <->  ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  e.  (Pell14QR `  ( ( A ^ 2 )  - 
1 ) ) ) )
6838adantr 453 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  ( CC  \  QQ ) )
6942adantr 453 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  X  e.  QQ )
7045adantr 453 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  Y  e.  QQ )
71 frmx 26366 . . . . . . . 8  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
7271a1i 12 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  -> Xrm  : ( ( ZZ>= `  2 )  X.  ZZ ) --> NN0 )
73 simpl1 963 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  A  e.  ( ZZ>= `  2 )
)
74 simpr 449 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
75 fovrn 5924 . . . . . . 7  |-  ( ( Xrm  : ( ( ZZ>= `  2
)  X.  ZZ ) --> NN0  /\  A  e.  ( ZZ>= `  2 )  /\  n  e.  ZZ )  ->  ( A Xrm  n )  e.  NN0 )
7672, 73, 74, 75syl3anc 1187 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( A Xrm 
n )  e.  NN0 )
7740, 76sseldi 3153 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( A Xrm 
n )  e.  QQ )
78 zssq 10291 . . . . . 6  |-  ZZ  C_  QQ
79 frmy 26367 . . . . . . . 8  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
8079a1i 12 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  -> Yrm  : ( ( ZZ>= `  2 )  X.  ZZ ) --> ZZ )
81 fovrn 5924 . . . . . . 7  |-  ( ( Yrm  : ( ( ZZ>= `  2
)  X.  ZZ ) --> ZZ  /\  A  e.  ( ZZ>= `  2 )  /\  n  e.  ZZ )  ->  ( A Yrm  n )  e.  ZZ )
8280, 73, 74, 81syl3anc 1187 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( A Yrm 
n )  e.  ZZ )
8378, 82sseldi 3153 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( A Yrm 
n )  e.  QQ )
84 qirropth 26361 . . . . 5  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( X  e.  QQ  /\  Y  e.  QQ )  /\  ( ( A Xrm  n )  e.  QQ  /\  ( A Yrm  n )  e.  QQ ) )  -> 
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( ( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  <->  ( X  =  ( A Xrm  n )  /\  Y  =  ( A Yrm  n ) ) ) )
8568, 69, 70, 77, 83, 84syl122anc 1196 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( ( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  <->  ( X  =  ( A Xrm  n )  /\  Y  =  ( A Yrm  n ) ) ) )
86 rmxyval 26368 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  n  e.  ZZ )  ->  (
( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ n ) )
87863ad2antl1 1122 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ n ) )
88 rmspecfund 26362 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  (PellFund `  (
( A ^ 2 )  -  1 ) )  =  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
89883ad2ant1 981 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (PellFund `  ( ( A ^
2 )  -  1 ) )  =  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
9089adantr 453 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (PellFund `  ( ( A ^
2 )  -  1 ) )  =  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
9190oveq1d 5807 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
(PellFund `  ( ( A ^ 2 )  - 
1 ) ) ^
n )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ n ) )
9287, 91eqtr4d 2293 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  =  ( (PellFund `  (
( A ^ 2 )  -  1 ) ) ^ n ) )
9392eqeq2d 2269 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( ( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  <->  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( (PellFund `  ( ( A ^ 2 )  - 
1 ) ) ^
n ) ) )
9485, 93bitr3d 248 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( X  =  ( A Xrm  n )  /\  Y  =  ( A Yrm  n ) )  <->  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( (PellFund `  ( ( A ^
2 )  -  1 ) ) ^ n
) ) )
9594rexbidva 2535 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( E. n  e.  ZZ  ( X  =  ( A Xrm 
n )  /\  Y  =  ( A Yrm  n ) )  <->  E. n  e.  ZZ  ( X  +  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( (PellFund `  ( ( A ^
2 )  -  1 ) ) ^ n
) ) )
964, 67, 953bitr4d 278 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  <->  E. n  e.  ZZ  ( X  =  ( A Xrm  n
)  /\  Y  =  ( A Yrm  n ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   E.wrex 2519    \ cdif 3124    X. cxp 4659   -->wf 4669   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704   1c1 8706    + caddc 8708    x. cmul 8710    - cmin 9005   NNcn 9714   2c2 9763   NN0cn0 9933   ZZcz 9992   ZZ>=cuz 10198   QQcq 10284   ^cexp 11071   sqrcsqr 11684  ◻NNcsquarenn 26289  Pell14QRcpell14qr 26292  PellFundcpellfund 26293   Xrm crmx 26353   Yrm crmy 26354
This theorem is referenced by:  rmxynorm  26371  jm2.27b  26467
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-omul 6452  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-acn 7543  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9934  df-z 9993  df-dec 10093  df-uz 10199  df-q 10285  df-rp 10323  df-xneg 10420  df-xadd 10421  df-xmul 10422  df-ioo 10627  df-ioc 10628  df-ico 10629  df-icc 10630  df-fz 10750  df-fzo 10838  df-fl 10892  df-mod 10941  df-seq 11014  df-exp 11072  df-fac 11256  df-bc 11283  df-hash 11305  df-shft 11528  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-limsup 11911  df-clim 11928  df-rlim 11929  df-sum 12125  df-ef 12312  df-sin 12314  df-cos 12315  df-pi 12317  df-divides 12495  df-gcd 12649  df-numer 12769  df-denom 12770  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-starv 13186  df-sca 13187  df-vsca 13188  df-tset 13190  df-ple 13191  df-ds 13193  df-hom 13195  df-cco 13196  df-rest 13290  df-topn 13291  df-topgen 13307  df-pt 13308  df-prds 13311  df-xrs 13366  df-0g 13367  df-gsum 13368  df-qtop 13373  df-imas 13374  df-xps 13376  df-mre 13451  df-mrc 13452  df-acs 13454  df-mnd 14330  df-submnd 14379  df-mulg 14455  df-cntz 14756  df-cmn 15054  df-xmet 16336  df-met 16337  df-bl 16338  df-mopn 16339  df-cnfld 16341  df-top 16599  df-bases 16601  df-topon 16602  df-topsp 16603  df-cld 16719  df-ntr 16720  df-cls 16721  df-nei 16798  df-lp 16831  df-perf 16832  df-cn 16920  df-cnp 16921  df-haus 17006  df-tx 17220  df-hmeo 17409  df-fbas 17483  df-fg 17484  df-fil 17504  df-fm 17596  df-flim 17597  df-flf 17598  df-xms 17848  df-ms 17849  df-tms 17850  df-cncf 18345  df-limc 19179  df-dv 19180  df-log 19877  df-squarenn 26294  df-pell1qr 26295  df-pell14qr 26296  df-pell1234qr 26297  df-pellfund 26298  df-rmx 26355  df-rmy 26356
  Copyright terms: Public domain W3C validator