MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcom Unicode version

Theorem rngcom 15364
Description: Commutativity of the additive group of a ring. (See also lmodcom 15666.) (Contributed by Gérard Lang, 4-Dec-2014.)
Hypotheses
Ref Expression
rngacl.b  |-  B  =  ( Base `  R
)
rngacl.p  |-  .+  =  ( +g  `  R )
Assertion
Ref Expression
rngcom  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem rngcom
StepHypRef Expression
1 simp1 957 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Ring )
2 rngacl.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
3 eqid 2285 . . . . . . . . . . 11  |-  ( 1r
`  R )  =  ( 1r `  R
)
42, 3rngidcl 15356 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
51, 4syl 17 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( 1r `  R )  e.  B )
6 rngacl.p . . . . . . . . . 10  |-  .+  =  ( +g  `  R )
72, 6rngacl 15363 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  e.  B  /\  ( 1r
`  R )  e.  B )  ->  (
( 1r `  R
)  .+  ( 1r `  R ) )  e.  B )
81, 5, 5, 7syl3anc 1184 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
)  .+  ( 1r `  R ) )  e.  B )
9 simp2 958 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
10 simp3 959 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
11 eqid 2285 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
122, 6, 11rngdi 15354 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( ( 1r `  R )  .+  ( 1r `  R ) )  e.  B  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) ( X 
.+  Y ) )  =  ( ( ( ( 1r `  R
)  .+  ( 1r `  R ) ) ( .r `  R ) X )  .+  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y ) ) )
131, 8, 9, 10, 12syl13anc 1186 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  R ) 
.+  ( 1r `  R ) ) ( .r `  R ) X )  .+  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y ) ) )
142, 6rngacl 15363 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
152, 6, 11rngdir 15355 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  e.  B  /\  ( 1r `  R )  e.  B  /\  ( X  .+  Y )  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) ( X 
.+  Y ) )  =  ( ( ( 1r `  R ) ( .r `  R
) ( X  .+  Y ) )  .+  ( ( 1r `  R ) ( .r
`  R ) ( X  .+  Y ) ) ) )
161, 5, 5, 14, 15syl13anc 1186 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) ( X  .+  Y ) )  =  ( ( ( 1r
`  R ) ( .r `  R ) ( X  .+  Y
) )  .+  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) ) ) )
1713, 16eqtr3d 2319 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) X ) 
.+  ( ( ( 1r `  R ) 
.+  ( 1r `  R ) ) ( .r `  R ) Y ) )  =  ( ( ( 1r
`  R ) ( .r `  R ) ( X  .+  Y
) )  .+  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) ) ) )
182, 6, 11rngdir 15355 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  e.  B  /\  ( 1r `  R )  e.  B  /\  X  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) X )  =  ( ( ( 1r `  R ) ( .r `  R
) X )  .+  ( ( 1r `  R ) ( .r
`  R ) X ) ) )
191, 5, 5, 9, 18syl13anc 1186 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) X )  =  ( ( ( 1r
`  R ) ( .r `  R ) X )  .+  (
( 1r `  R
) ( .r `  R ) X ) ) )
202, 11, 3rnglidm 15359 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) X )  =  X )
211, 9, 20syl2anc 644 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) X )  =  X )
2221, 21oveq12d 5838 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R ) ( .r
`  R ) X )  .+  ( ( 1r `  R ) ( .r `  R
) X ) )  =  ( X  .+  X ) )
2319, 22eqtrd 2317 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) X )  =  ( X  .+  X
) )
242, 6, 11rngdir 15355 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  e.  B  /\  ( 1r `  R )  e.  B  /\  Y  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) Y )  =  ( ( ( 1r `  R ) ( .r `  R
) Y )  .+  ( ( 1r `  R ) ( .r
`  R ) Y ) ) )
251, 5, 5, 10, 24syl13anc 1186 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y )  =  ( ( ( 1r
`  R ) ( .r `  R ) Y )  .+  (
( 1r `  R
) ( .r `  R ) Y ) ) )
262, 11, 3rnglidm 15359 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) Y )  =  Y )
271, 10, 26syl2anc 644 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) Y )  =  Y )
2827, 27oveq12d 5838 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R ) ( .r
`  R ) Y )  .+  ( ( 1r `  R ) ( .r `  R
) Y ) )  =  ( Y  .+  Y ) )
2925, 28eqtrd 2317 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y )  =  ( Y  .+  Y
) )
3023, 29oveq12d 5838 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) X ) 
.+  ( ( ( 1r `  R ) 
.+  ( 1r `  R ) ) ( .r `  R ) Y ) )  =  ( ( X  .+  X )  .+  ( Y  .+  Y ) ) )
312, 11, 3rnglidm 15359 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( X  .+  Y )  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) )  =  ( X  .+  Y ) )
321, 14, 31syl2anc 644 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) )  =  ( X  .+  Y ) )
3332, 32oveq12d 5838 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R ) ( .r
`  R ) ( X  .+  Y ) )  .+  ( ( 1r `  R ) ( .r `  R
) ( X  .+  Y ) ) )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
3417, 30, 333eqtr3d 2325 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  ( Y  .+  Y ) )  =  ( ( X  .+  Y )  .+  ( X  .+  Y ) ) )
35 rnggrp 15341 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
361, 35syl 17 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Grp )
372, 6rngacl 15363 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  X  e.  B )  ->  ( X  .+  X )  e.  B )
381, 9, 9, 37syl3anc 1184 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  X )  e.  B )
392, 6grpass 14491 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( ( X  .+  X )  e.  B  /\  Y  e.  B  /\  Y  e.  B
) )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
4036, 38, 10, 10, 39syl13anc 1186 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
412, 6grpass 14491 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( ( X  .+  Y )  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4236, 14, 9, 10, 41syl13anc 1186 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4334, 40, 423eqtr4d 2327 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y ) )
442, 6rngacl 15363 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  .+  X )  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  e.  B )
451, 38, 10, 44syl3anc 1184 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  e.  B )
462, 6rngacl 15363 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  .+  Y )  e.  B  /\  X  e.  B )  ->  (
( X  .+  Y
)  .+  X )  e.  B )
471, 14, 9, 46syl3anc 1184 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  Y
)  .+  X )  e.  B )
482, 6grprcan 14510 . . . . 5  |-  ( ( R  e.  Grp  /\  ( ( ( X 
.+  X )  .+  Y )  e.  B  /\  ( ( X  .+  Y )  .+  X
)  e.  B  /\  Y  e.  B )
)  ->  ( (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
4936, 45, 47, 10, 48syl13anc 1186 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( ( X 
.+  X )  .+  Y )  .+  Y
)  =  ( ( ( X  .+  Y
)  .+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5043, 49mpbid 203 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  X ) )
512, 6grpass 14491 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
5236, 9, 9, 10, 51syl13anc 1186 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
532, 6grpass 14491 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  X  e.  B
) )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5436, 9, 10, 9, 53syl13anc 1186 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5550, 52, 543eqtr3d 2325 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) ) )
562, 6rngacl 15363 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y  .+  X )  e.  B )
57563com23 1159 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  X )  e.  B )
582, 6grplcan 14529 . . 3  |-  ( ( R  e.  Grp  /\  ( ( X  .+  Y )  e.  B  /\  ( Y  .+  X
)  e.  B  /\  X  e.  B )
)  ->  ( ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <-> 
( X  .+  Y
)  =  ( Y 
.+  X ) ) )
5936, 14, 57, 9, 58syl13anc 1186 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
6055, 59mpbid 203 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ w3a 936    = wceq 1624    e. wcel 1685   ` cfv 5222  (class class class)co 5820   Basecbs 13143   +g cplusg 13203   .rcmulr 13204   Grpcgrp 14357   Ringcrg 15332   1rcur 15334
This theorem is referenced by:  rngabl  15365
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743  df-2 9800  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-plusg 13216  df-0g 13399  df-mnd 14362  df-grp 14484  df-minusg 14485  df-mgp 15321  df-rng 15335  df-ur 15337
  Copyright terms: Public domain W3C validator