Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegcl Unicode version

Theorem rngonegcl 25908
Description: A ring is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ringnegcl.1  |-  G  =  ( 1st `  R
)
ringnegcl.2  |-  X  =  ran  G
ringnegcl.3  |-  N  =  ( inv `  G
)
Assertion
Ref Expression
rngonegcl  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  e.  X )

Proof of Theorem rngonegcl
StepHypRef Expression
1 ringnegcl.1 . . 3  |-  G  =  ( 1st `  R
)
21rngogrpo 20982 . 2  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
3 ringnegcl.2 . . 3  |-  X  =  ran  G
4 ringnegcl.3 . . 3  |-  N  =  ( inv `  G
)
53, 4grpoinvcl 20818 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  A )  e.  X )
62, 5sylan 459 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   ran crn 4627   ` cfv 4638   1stc1st 6019   GrpOpcgr 20778   invcgn 20780   RingOpscrngo 20967
This theorem is referenced by:  rngonegmn1l  25912  rngonegmn1r  25913  rngoneglmul  25914  rngonegrmul  25915  rngosubdi  25916  rngosubdir  25917  idlnegcl  25979
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-grpo 20783  df-gid 20784  df-ginv 20785  df-ablo 20874  df-rngo 20968
  Copyright terms: Public domain W3C validator