Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegcl Unicode version

Theorem rngonegcl 25976
Description: A ring is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ringnegcl.1  |-  G  =  ( 1st `  R
)
ringnegcl.2  |-  X  =  ran  G
ringnegcl.3  |-  N  =  ( inv `  G
)
Assertion
Ref Expression
rngonegcl  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  e.  X )

Proof of Theorem rngonegcl
StepHypRef Expression
1 ringnegcl.1 . . 3  |-  G  =  ( 1st `  R
)
21rngogrpo 21050 . 2  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
3 ringnegcl.2 . . 3  |-  X  =  ran  G
4 ringnegcl.3 . . 3  |-  N  =  ( inv `  G
)
53, 4grpoinvcl 20886 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  A )  e.  X )
62, 5sylan 459 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685   ran crn 4690   ` cfv 5222   1stc1st 6082   GrpOpcgr 20846   invcgn 20848   RingOpscrngo 21035
This theorem is referenced by:  rngonegmn1l  25980  rngonegmn1r  25981  rngoneglmul  25982  rngonegrmul  25983  rngosubdi  25984  rngosubdir  25985  idlnegcl  26047
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-grpo 20851  df-gid 20852  df-ginv 20853  df-ablo 20942  df-rngo 21036
  Copyright terms: Public domain W3C validator