MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnin Unicode version

Theorem rnin 4997
Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
rnin  |-  ran  (  A  i^i  B )  C_  ( ran  A  i^i  ran  B )

Proof of Theorem rnin
StepHypRef Expression
1 cnvin 4995 . . . 4  |-  `' ( A  i^i  B )  =  ( `' A  i^i  `' B )
21dmeqi 4787 . . 3  |-  dom  `' ( A  i^i  B )  =  dom  ( `' A  i^i  `' B
)
3 dmin 4793 . . 3  |-  dom  ( `' A  i^i  `' B
)  C_  ( dom  `'  A  i^i  dom  `'  B )
42, 3eqsstri 3129 . 2  |-  dom  `' ( A  i^i  B ) 
C_  ( dom  `'  A  i^i  dom  `'  B
)
5 df-rn 4599 . 2  |-  ran  (  A  i^i  B )  =  dom  `' ( A  i^i  B )
6 df-rn 4599 . . 3  |-  ran  A  =  dom  `'  A
7 df-rn 4599 . . 3  |-  ran  B  =  dom  `'  B
86, 7ineq12i 3276 . 2  |-  ( ran 
A  i^i  ran  B )  =  ( dom  `'  A  i^i  dom  `'  B
)
94, 5, 83sstr4i 3138 1  |-  ran  (  A  i^i  B )  C_  ( ran  A  i^i  ran  B )
Colors of variables: wff set class
Syntax hints:    i^i cin 3077    C_ wss 3078   `'ccnv 4579   dom cdm 4580   ran crn 4581
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-br 3921  df-opab 3975  df-xp 4594  df-rel 4595  df-cnv 4596  df-dm 4598  df-rn 4599
  Copyright terms: Public domain W3C validator