MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnin Unicode version

Theorem rnin 5272
Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
rnin  |-  ran  ( A  i^i  B )  C_  ( ran  A  i^i  ran  B )

Proof of Theorem rnin
StepHypRef Expression
1 cnvin 5270 . . . 4  |-  `' ( A  i^i  B )  =  ( `' A  i^i  `' B )
21dmeqi 5062 . . 3  |-  dom  `' ( A  i^i  B )  =  dom  ( `' A  i^i  `' B
)
3 dmin 5068 . . 3  |-  dom  ( `' A  i^i  `' B
)  C_  ( dom  `' A  i^i  dom  `' B )
42, 3eqsstri 3370 . 2  |-  dom  `' ( A  i^i  B ) 
C_  ( dom  `' A  i^i  dom  `' B
)
5 df-rn 4880 . 2  |-  ran  ( A  i^i  B )  =  dom  `' ( A  i^i  B )
6 df-rn 4880 . . 3  |-  ran  A  =  dom  `' A
7 df-rn 4880 . . 3  |-  ran  B  =  dom  `' B
86, 7ineq12i 3532 . 2  |-  ( ran 
A  i^i  ran  B )  =  ( dom  `' A  i^i  dom  `' B
)
94, 5, 83sstr4i 3379 1  |-  ran  ( A  i^i  B )  C_  ( ran  A  i^i  ran  B )
Colors of variables: wff set class
Syntax hints:    i^i cin 3311    C_ wss 3312   `'ccnv 4868   dom cdm 4869   ran crn 4870
This theorem is referenced by:  inimass  5279  restutop  18255
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4875  df-rel 4876  df-cnv 4877  df-dm 4879  df-rn 4880
  Copyright terms: Public domain W3C validator