MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rolle Structured version   Unicode version

Theorem rolle 19874
Description: Rolle's theorem. If  F is a real continuous function on  [ A ,  B ] which is differentiable on  ( A ,  B
), and  F ( A )  =  F ( B ), then there is some  x  e.  ( A ,  B ) such that  ( RR  _D  F ) `  x  =  0. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
rolle.a  |-  ( ph  ->  A  e.  RR )
rolle.b  |-  ( ph  ->  B  e.  RR )
rolle.lt  |-  ( ph  ->  A  <  B )
rolle.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
rolle.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
rolle.e  |-  ( ph  ->  ( F `  A
)  =  ( F `
 B ) )
Assertion
Ref Expression
rolle  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Distinct variable groups:    x, A    ph, x    x, B    x, F

Proof of Theorem rolle
Dummy variables  u  t  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rolle.a . . . 4  |-  ( ph  ->  A  e.  RR )
2 rolle.b . . . 4  |-  ( ph  ->  B  e.  RR )
3 rolle.lt . . . . 5  |-  ( ph  ->  A  <  B )
41, 2, 3ltled 9221 . . . 4  |-  ( ph  ->  A  <_  B )
5 rolle.f . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
61, 2, 4, 5evthicc 19356 . . 3  |-  ( ph  ->  ( E. u  e.  ( A [,] B
) A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  E. v  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
7 reeanv 2875 . . 3  |-  ( E. u  e.  ( A [,] B ) E. v  e.  ( A [,] B ) ( A. y  e.  ( A [,] B ) ( F `  y
)  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `
 v )  <_ 
( F `  y
) )  <->  ( E. u  e.  ( A [,] B ) A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  E. v  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
86, 7sylibr 204 . 2  |-  ( ph  ->  E. u  e.  ( A [,] B ) E. v  e.  ( A [,] B ) ( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
9 r19.26 2838 . . . 4  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  <->  ( A. y  e.  ( A [,] B ) ( F `
 y )  <_ 
( F `  u
)  /\  A. y  e.  ( A [,] B
) ( F `  v )  <_  ( F `  y )
) )
101ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A  e.  RR )
112ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  B  e.  RR )
123ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A  <  B )
135ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  F  e.  ( ( A [,] B ) -cn-> RR ) )
14 rolle.d . . . . . . . . 9  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
1514ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  dom  ( RR  _D  F
)  =  ( A (,) B ) )
16 simpl 444 . . . . . . . . . . 11  |-  ( ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  ( F `  y )  <_  ( F `  u
) )
1716ralimi 2781 . . . . . . . . . 10  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )
)
18 fveq2 5728 . . . . . . . . . . . 12  |-  ( y  =  t  ->  ( F `  y )  =  ( F `  t ) )
1918breq1d 4222 . . . . . . . . . . 11  |-  ( y  =  t  ->  (
( F `  y
)  <_  ( F `  u )  <->  ( F `  t )  <_  ( F `  u )
) )
2019cbvralv 2932 . . . . . . . . . 10  |-  ( A. y  e.  ( A [,] B ) ( F `
 y )  <_ 
( F `  u
)  <->  A. t  e.  ( A [,] B ) ( F `  t
)  <_  ( F `  u ) )
2117, 20sylib 189 . . . . . . . . 9  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. t  e.  ( A [,] B
) ( F `  t )  <_  ( F `  u )
)
2221ad2antrl 709 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A. t  e.  ( A [,] B ) ( F `  t )  <_  ( F `  u ) )
23 simplrl 737 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  u  e.  ( A [,] B ) )
24 simprr 734 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  -.  u  e.  { A ,  B } )
2510, 11, 12, 13, 15, 22, 23, 24rollelem 19873 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 )
2625expr 599 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  ( -.  u  e.  { A ,  B }  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
271ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A  e.  RR )
282ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  B  e.  RR )
293ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A  <  B )
30 cncff 18923 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
315, 30syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : ( A [,] B ) --> RR )
3231ffvelrnda 5870 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  ( F `  u )  e.  RR )
3332renegcld 9464 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  -u ( F `
 u )  e.  RR )
34 eqid 2436 . . . . . . . . . . . 12  |-  ( u  e.  ( A [,] B )  |->  -u ( F `  u )
)  =  ( u  e.  ( A [,] B )  |->  -u ( F `  u )
)
3533, 34fmptd 5893 . . . . . . . . . . 11  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR )
36 ax-resscn 9047 . . . . . . . . . . . 12  |-  RR  C_  CC
37 ssid 3367 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
38 cncfss 18929 . . . . . . . . . . . . . . 15  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( A [,] B
) -cn-> RR )  C_  (
( A [,] B
) -cn-> CC ) )
3936, 37, 38mp2an 654 . . . . . . . . . . . . . 14  |-  ( ( A [,] B )
-cn-> RR )  C_  (
( A [,] B
) -cn-> CC )
4039, 5sseldi 3346 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
4134negfcncf 18949 . . . . . . . . . . . . 13  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> CC ) )
4240, 41syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> CC ) )
43 cncffvrn 18928 . . . . . . . . . . . 12  |-  ( ( RR  C_  CC  /\  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) )  e.  ( ( A [,] B )
-cn-> CC ) )  -> 
( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR ) )
4436, 42, 43sylancr 645 . . . . . . . . . . 11  |-  ( ph  ->  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR ) )
4535, 44mpbird 224 . . . . . . . . . 10  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4645ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4736a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  RR  C_  CC )
48 iccssre 10992 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
491, 2, 48syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A [,] B
)  C_  RR )
50 fss 5599 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( A [,] B ) --> RR 
/\  RR  C_  CC )  ->  F : ( A [,] B ) --> CC )
5131, 36, 50sylancl 644 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : ( A [,] B ) --> CC )
5251ffvelrnda 5870 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  ( F `  u )  e.  CC )
5352negcld 9398 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  -u ( F `
 u )  e.  CC )
54 eqid 2436 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5554tgioo2 18834 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
56 iccntr 18852 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
571, 2, 56syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
5847, 49, 53, 55, 54, 57dvmptntr 19857 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( RR  _D  ( u  e.  ( A (,) B )  |->  -u ( F `  u )
) ) )
59 reex 9081 . . . . . . . . . . . . . . . 16  |-  RR  e.  _V
6059prid1 3912 . . . . . . . . . . . . . . 15  |-  RR  e.  { RR ,  CC }
6160a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  RR  e.  { RR ,  CC } )
62 ioossicc 10996 . . . . . . . . . . . . . . . 16  |-  ( A (,) B )  C_  ( A [,] B )
6362sseli 3344 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( A (,) B )  ->  u  e.  ( A [,] B
) )
6463, 52sylan2 461 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A (,) B ) )  ->  ( F `  u )  e.  CC )
65 fvex 5742 . . . . . . . . . . . . . . 15  |-  ( ( RR  _D  F ) `
 u )  e. 
_V
6665a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  u )  e.  _V )
6731feqmptd 5779 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  =  ( u  e.  ( A [,] B )  |->  ( F `
 u ) ) )
6867oveq2d 6097 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
_D  ( u  e.  ( A [,] B
)  |->  ( F `  u ) ) ) )
69 dvf 19794 . . . . . . . . . . . . . . . . 17  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
7014feq2d 5581 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : ( A (,) B ) --> CC ) )
7169, 70mpbii 203 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
7271feqmptd 5779 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( u  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 u ) ) )
7347, 49, 52, 55, 54, 57dvmptntr 19857 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  ( F `  u ) ) )  =  ( RR  _D  ( u  e.  ( A (,) B )  |->  ( F `
 u ) ) ) )
7468, 72, 733eqtr3rd 2477 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A (,) B )  |->  ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  u )
) )
7561, 64, 66, 74dvmptneg 19852 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A (,) B )  |->  -u ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
7658, 75eqtrd 2468 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
7776dmeqd 5072 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  dom  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
78 dmmptg 5367 . . . . . . . . . . . 12  |-  ( A. u  e.  ( A (,) B ) -u (
( RR  _D  F
) `  u )  e.  _V  ->  dom  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)  =  ( A (,) B ) )
79 negex 9304 . . . . . . . . . . . . 13  |-  -u (
( RR  _D  F
) `  u )  e.  _V
8079a1i 11 . . . . . . . . . . . 12  |-  ( u  e.  ( A (,) B )  ->  -u (
( RR  _D  F
) `  u )  e.  _V )
8178, 80mprg 2775 . . . . . . . . . . 11  |-  dom  (
u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) )  =  ( A (,) B )
8277, 81syl6eq 2484 . . . . . . . . . 10  |-  ( ph  ->  dom  ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( A (,) B ) )
8382ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  dom  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( A (,) B ) )
84 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  ( F `  v )  <_  ( F `  y
) )
8531ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  F :
( A [,] B
) --> RR )
86 simplrr 738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  v  e.  ( A [,] B ) )
8785, 86ffvelrnd 5871 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  v )  e.  RR )
8831adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  F : ( A [,] B ) --> RR )
8988ffvelrnda 5870 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  y )  e.  RR )
9087, 89lenegd 9605 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  v )  <_  ( F `  y
)  <->  -u ( F `  y )  <_  -u ( F `  v )
) )
91 fveq2 5728 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  y  ->  ( F `  u )  =  ( F `  y ) )
9291negeqd 9300 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  y  ->  -u ( F `  u )  =  -u ( F `  y ) )
93 negex 9304 . . . . . . . . . . . . . . . . . 18  |-  -u ( F `  y )  e.  _V
9492, 34, 93fvmpt 5806 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( A [,] B )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  =  -u ( F `  y ) )
9594adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  y )  =  -u ( F `  y ) )
96 fveq2 5728 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  v  ->  ( F `  u )  =  ( F `  v ) )
9796negeqd 9300 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  v  ->  -u ( F `  u )  =  -u ( F `  v ) )
98 negex 9304 . . . . . . . . . . . . . . . . . 18  |-  -u ( F `  v )  e.  _V
9997, 34, 98fvmpt 5806 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( A [,] B )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  =  -u ( F `  v ) )
10086, 99syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  v )  =  -u ( F `  v ) )
10195, 100breq12d 4225 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  <->  -u ( F `
 y )  <_  -u ( F `  v
) ) )
10290, 101bitr4d 248 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  v )  <_  ( F `  y
)  <->  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) ) )
10384, 102syl5ib 211 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) ) )
104103ralimdva 2784 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. y  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) ) )
105104imp 419 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  A. y  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) )
106 fveq2 5728 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  =  ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t ) )
107106breq1d 4222 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  <->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  t )  <_  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  v )
) )
108107cbvralv 2932 . . . . . . . . . . 11  |-  ( A. y  e.  ( A [,] B ) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  y )  <_  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  v )  <->  A. t  e.  ( A [,] B ) ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) )
109105, 108sylib 189 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  A. t  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  t )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) )
110109adantrr 698 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A. t  e.  ( A [,] B ) ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) )
111 simplrr 738 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
v  e.  ( A [,] B ) )
112 simprr 734 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  -.  v  e.  { A ,  B } )
11327, 28, 29, 46, 83, 110, 111, 112rollelem 19873 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0 )
11476fveq1d 5730 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  ( ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) `  x
) )
115 fveq2 5728 . . . . . . . . . . . . . . 15  |-  ( u  =  x  ->  (
( RR  _D  F
) `  u )  =  ( ( RR 
_D  F ) `  x ) )
116115negeqd 9300 . . . . . . . . . . . . . 14  |-  ( u  =  x  ->  -u (
( RR  _D  F
) `  u )  =  -u ( ( RR 
_D  F ) `  x ) )
117 eqid 2436 . . . . . . . . . . . . . 14  |-  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)  =  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)
118 negex 9304 . . . . . . . . . . . . . 14  |-  -u (
( RR  _D  F
) `  x )  e.  _V
119116, 117, 118fvmpt 5806 . . . . . . . . . . . . 13  |-  ( x  e.  ( A (,) B )  ->  (
( u  e.  ( A (,) B ) 
|->  -u ( ( RR 
_D  F ) `  u ) ) `  x )  =  -u ( ( RR  _D  F ) `  x
) )
120114, 119sylan9eq 2488 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  = 
-u ( ( RR 
_D  F ) `  x ) )
121120eqeq1d 2444 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0  <->  -u (
( RR  _D  F
) `  x )  =  0 ) )
12214eleq2d 2503 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  dom  ( RR  _D  F
)  <->  x  e.  ( A (,) B ) ) )
123122biimpar 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  dom  ( RR  _D  F
) )
12469ffvelrni 5869 . . . . . . . . . . . . 13  |-  ( x  e.  dom  ( RR 
_D  F )  -> 
( ( RR  _D  F ) `  x
)  e.  CC )
125123, 124syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
126125negeq0d 9403 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  x )  =  0  <->  -u ( ( RR  _D  F ) `
 x )  =  0 ) )
127121, 126bitr4d 248 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0  <->  (
( RR  _D  F
) `  x )  =  0 ) )
128127rexbidva 2722 . . . . . . . . 9  |-  ( ph  ->  ( E. x  e.  ( A (,) B
) ( ( RR 
_D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  =  0  <->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
129128ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
( E. x  e.  ( A (,) B
) ( ( RR 
_D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  =  0  <->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
130113, 129mpbid 202 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 )
131130expr 599 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  ( -.  v  e.  { A ,  B }  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
132 vex 2959 . . . . . . . . . . 11  |-  u  e. 
_V
133132elpr 3832 . . . . . . . . . 10  |-  ( u  e.  { A ,  B }  <->  ( u  =  A  \/  u  =  B ) )
134 fveq2 5728 . . . . . . . . . . . 12  |-  ( u  =  A  ->  ( F `  u )  =  ( F `  A ) )
135134a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( u  =  A  ->  ( F `  u )  =  ( F `  A ) ) )
136 rolle.e . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  A
)  =  ( F `
 B ) )
137136eqcomd 2441 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  B
)  =  ( F `
 A ) )
138 fveq2 5728 . . . . . . . . . . . . 13  |-  ( u  =  B  ->  ( F `  u )  =  ( F `  B ) )
139138eqeq1d 2444 . . . . . . . . . . . 12  |-  ( u  =  B  ->  (
( F `  u
)  =  ( F `
 A )  <->  ( F `  B )  =  ( F `  A ) ) )
140137, 139syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ph  ->  ( u  =  B  ->  ( F `  u )  =  ( F `  A ) ) )
141135, 140jaod 370 . . . . . . . . . 10  |-  ( ph  ->  ( ( u  =  A  \/  u  =  B )  ->  ( F `  u )  =  ( F `  A ) ) )
142133, 141syl5bi 209 . . . . . . . . 9  |-  ( ph  ->  ( u  e.  { A ,  B }  ->  ( F `  u
)  =  ( F `
 A ) ) )
143 eleq1 2496 . . . . . . . . . . . 12  |-  ( u  =  v  ->  (
u  e.  { A ,  B }  <->  v  e.  { A ,  B }
) )
14496eqeq1d 2444 . . . . . . . . . . . 12  |-  ( u  =  v  ->  (
( F `  u
)  =  ( F `
 A )  <->  ( F `  v )  =  ( F `  A ) ) )
145143, 144imbi12d 312 . . . . . . . . . . 11  |-  ( u  =  v  ->  (
( u  e.  { A ,  B }  ->  ( F `  u
)  =  ( F `
 A ) )  <-> 
( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) ) )
146145imbi2d 308 . . . . . . . . . 10  |-  ( u  =  v  ->  (
( ph  ->  ( u  e.  { A ,  B }  ->  ( F `
 u )  =  ( F `  A
) ) )  <->  ( ph  ->  ( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) ) ) )
147146, 142chvarv 1969 . . . . . . . . 9  |-  ( ph  ->  ( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) )
148142, 147anim12d 547 . . . . . . . 8  |-  ( ph  ->  ( ( u  e. 
{ A ,  B }  /\  v  e.  { A ,  B }
)  ->  ( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) ) ) )
149148ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( u  e.  { A ,  B }  /\  v  e.  { A ,  B } )  -> 
( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) ) ) )
1501rexrd 9134 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR* )
1512rexrd 9134 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  RR* )
152 lbicc2 11013 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
153150, 151, 4, 152syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  ( A [,] B ) )
15431, 153ffvelrnd 5871 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F `  A
)  e.  RR )
155154ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  A )  e.  RR )
15689, 155letri3d 9215 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  y )  =  ( F `  A )  <->  ( ( F `  y )  <_  ( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) )
157 breq2 4216 . . . . . . . . . . . . . . 15  |-  ( ( F `  u )  =  ( F `  A )  ->  (
( F `  y
)  <_  ( F `  u )  <->  ( F `  y )  <_  ( F `  A )
) )
158 breq1 4215 . . . . . . . . . . . . . . 15  |-  ( ( F `  v )  =  ( F `  A )  ->  (
( F `  v
)  <_  ( F `  y )  <->  ( F `  A )  <_  ( F `  y )
) )
159157, 158bi2anan9 844 . . . . . . . . . . . . . 14  |-  ( ( ( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  <->  ( ( F `
 y )  <_ 
( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) )
160159bibi2d 310 . . . . . . . . . . . . 13  |-  ( ( ( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( ( F `
 y )  =  ( F `  A
)  <->  ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  <->  ( ( F `  y )  =  ( F `  A )  <->  ( ( F `  y )  <_  ( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) ) )
161156, 160syl5ibrcom 214 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( F `  y )  =  ( F `  A )  <-> 
( ( F `  y )  <_  ( F `  u )  /\  ( F `  v
)  <_  ( F `  y ) ) ) ) )
162161impancom 428 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  (
y  e.  ( A [,] B )  -> 
( ( F `  y )  =  ( F `  A )  <-> 
( ( F `  y )  <_  ( F `  u )  /\  ( F `  v
)  <_  ( F `  y ) ) ) ) )
163162imp 419 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  /\  y  e.  ( A [,] B
) )  ->  (
( F `  y
)  =  ( F `
 A )  <->  ( ( F `  y )  <_  ( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) ) )
164163ralbidva 2721 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( F `  y )  =  ( F `  A )  <->  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) ) )
165 ffn 5591 . . . . . . . . . . . . . 14  |-  ( F : ( A [,] B ) --> RR  ->  F  Fn  ( A [,] B ) )
16631, 165syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  ( A [,] B ) )
167 fnconstg 5631 . . . . . . . . . . . . . 14  |-  ( ( F `  A )  e.  RR  ->  (
( A [,] B
)  X.  { ( F `  A ) } )  Fn  ( A [,] B ) )
168154, 167syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A [,] B )  X.  {
( F `  A
) } )  Fn  ( A [,] B
) )
169 eqfnfv 5827 . . . . . . . . . . . . 13  |-  ( ( F  Fn  ( A [,] B )  /\  ( ( A [,] B )  X.  {
( F `  A
) } )  Fn  ( A [,] B
) )  ->  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  <->  A. y  e.  ( A [,] B ) ( F `  y )  =  ( ( ( A [,] B )  X.  { ( F `
 A ) } ) `  y ) ) )
170166, 168, 169syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( ( ( A [,] B )  X.  {
( F `  A
) } ) `  y ) ) )
171 fvex 5742 . . . . . . . . . . . . . . 15  |-  ( F `
 A )  e. 
_V
172171fvconst2 5947 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A [,] B )  ->  (
( ( A [,] B )  X.  {
( F `  A
) } ) `  y )  =  ( F `  A ) )
173172eqeq2d 2447 . . . . . . . . . . . . 13  |-  ( y  e.  ( A [,] B )  ->  (
( F `  y
)  =  ( ( ( A [,] B
)  X.  { ( F `  A ) } ) `  y
)  <->  ( F `  y )  =  ( F `  A ) ) )
174173ralbiia 2737 . . . . . . . . . . . 12  |-  ( A. y  e.  ( A [,] B ) ( F `
 y )  =  ( ( ( A [,] B )  X. 
{ ( F `  A ) } ) `
 y )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A ) )
175170, 174syl6bb 253 . . . . . . . . . . 11  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A ) ) )
176 fconstmpt 4921 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A [,] B )  X.  { ( F `
 A ) } )  =  ( u  e.  ( A [,] B )  |->  ( F `
 A ) )
177176eqeq2i 2446 . . . . . . . . . . . . . . . . . . 19  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  <-> 
F  =  ( u  e.  ( A [,] B )  |->  ( F `
 A ) ) )
178177biimpi 187 . . . . . . . . . . . . . . . . . 18  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  ->  F  =  ( u  e.  ( A [,] B )  |->  ( F `  A ) ) )
179178oveq2d 6097 . . . . . . . . . . . . . . . . 17  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  ->  ( RR  _D  F )  =  ( RR  _D  ( u  e.  ( A [,] B )  |->  ( F `
 A ) ) ) )
180154recnd 9114 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( F `  A
)  e.  CC )
181180adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  RR )  ->  ( F `
 A )  e.  CC )
182 0cn 9084 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  CC
183182a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  RR )  ->  0  e.  CC )
18461, 180dvmptc 19844 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( RR  _D  (
u  e.  RR  |->  ( F `  A ) ) )  =  ( u  e.  RR  |->  0 ) )
18561, 181, 183, 184, 49, 55, 54, 57dvmptres2 19848 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  ( F `  A ) ) )  =  ( u  e.  ( A (,) B )  |->  0 ) )
186179, 185sylan9eqr 2490 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  ( RR  _D  F )  =  ( u  e.  ( A (,) B )  |->  0 ) )
187186fveq1d 5730 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  ( ( RR 
_D  F ) `  x )  =  ( ( u  e.  ( A (,) B ) 
|->  0 ) `  x
) )
188 eqidd 2437 . . . . . . . . . . . . . . . 16  |-  ( u  =  x  ->  0  =  0 )
189 eqid 2436 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( A (,) B )  |->  0 )  =  ( u  e.  ( A (,) B
)  |->  0 )
190 c0ex 9085 . . . . . . . . . . . . . . . 16  |-  0  e.  _V
191188, 189, 190fvmpt 5806 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( A (,) B )  ->  (
( u  e.  ( A (,) B ) 
|->  0 ) `  x
)  =  0 )
192187, 191sylan9eq 2488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } ) )  /\  x  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  x )  =  0 )
193192ralrimiva 2789 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  A. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
194 ioon0 10942 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =/=  (/)  <->  A  <  B ) )
195150, 151, 194syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A (,) B )  =/=  (/)  <->  A  <  B ) )
1963, 195mpbird 224 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A (,) B
)  =/=  (/) )
197 r19.2z 3717 . . . . . . . . . . . . . 14  |-  ( ( ( A (,) B
)  =/=  (/)  /\  A. x  e.  ( A (,) B ) ( ( RR  _D  F ) `
 x )  =  0 )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
198196, 197sylan 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
199193, 198syldan 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
200199ex 424 . . . . . . . . . . 11  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
201175, 200sylbird 227 . . . . . . . . . 10  |-  ( ph  ->  ( A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
202201ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( F `  y )  =  ( F `  A )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
203164, 202sylbird 227 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
204203impancom 428 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
205149, 204syld 42 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( u  e.  { A ,  B }  /\  v  e.  { A ,  B } )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
20626, 131, 205ecased 911 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
207206ex 424 . . . 4  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
2089, 207syl5bir 210 . . 3  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  (
( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
209208rexlimdvva 2837 . 2  |-  ( ph  ->  ( E. u  e.  ( A [,] B
) E. v  e.  ( A [,] B
) ( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
2108, 209mpd 15 1  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   _Vcvv 2956    C_ wss 3320   (/)c0 3628   {csn 3814   {cpr 3815   class class class wbr 4212    e. cmpt 4266    X. cxp 4876   dom cdm 4878   ran crn 4879    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   RR*cxr 9119    < clt 9120    <_ cle 9121   -ucneg 9292   (,)cioo 10916   [,]cicc 10919   TopOpenctopn 13649   topGenctg 13665  ℂfldccnfld 16703   intcnt 17081   -cn->ccncf 18906    _D cdv 19750
This theorem is referenced by:  cmvth  19875  lhop1lem  19897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754
  Copyright terms: Public domain W3C validator