MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rolle Unicode version

Theorem rolle 19331
Description: Rolle's theorem. If  F is a real continuous function on  [ A ,  B ] which is differentiable on  ( A ,  B
), and  F ( A )  =  F ( B ), then there is some  x  e.  ( A ,  B ) such that  ( RR  _D  F ) `  x  =  0. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
rolle.a  |-  ( ph  ->  A  e.  RR )
rolle.b  |-  ( ph  ->  B  e.  RR )
rolle.lt  |-  ( ph  ->  A  <  B )
rolle.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
rolle.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
rolle.e  |-  ( ph  ->  ( F `  A
)  =  ( F `
 B ) )
Assertion
Ref Expression
rolle  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Distinct variable groups:    x, A    ph, x    x, B    x, F
Dummy variables  u  t  v  y are mutually distinct and distinct from all other variables.

Proof of Theorem rolle
StepHypRef Expression
1 rolle.a . . . 4  |-  ( ph  ->  A  e.  RR )
2 rolle.b . . . 4  |-  ( ph  ->  B  e.  RR )
3 rolle.lt . . . . 5  |-  ( ph  ->  A  <  B )
41, 2, 3ltled 8962 . . . 4  |-  ( ph  ->  A  <_  B )
5 rolle.f . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
61, 2, 4, 5evthicc 18813 . . 3  |-  ( ph  ->  ( E. u  e.  ( A [,] B
) A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  E. v  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
7 reeanv 2708 . . 3  |-  ( E. u  e.  ( A [,] B ) E. v  e.  ( A [,] B ) ( A. y  e.  ( A [,] B ) ( F `  y
)  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `
 v )  <_ 
( F `  y
) )  <->  ( E. u  e.  ( A [,] B ) A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  E. v  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
86, 7sylibr 205 . 2  |-  ( ph  ->  E. u  e.  ( A [,] B ) E. v  e.  ( A [,] B ) ( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
9 r19.26 2676 . . . 4  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  <->  ( A. y  e.  ( A [,] B ) ( F `
 y )  <_ 
( F `  u
)  /\  A. y  e.  ( A [,] B
) ( F `  v )  <_  ( F `  y )
) )
101ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A  e.  RR )
112ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  B  e.  RR )
123ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A  <  B )
135ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  F  e.  ( ( A [,] B ) -cn-> RR ) )
14 rolle.d . . . . . . . . 9  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
1514ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  dom  ( RR  _D  F
)  =  ( A (,) B ) )
16 simpl 445 . . . . . . . . . . 11  |-  ( ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  ( F `  y )  <_  ( F `  u
) )
1716ralimi 2619 . . . . . . . . . 10  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )
)
18 fveq2 5485 . . . . . . . . . . . 12  |-  ( y  =  t  ->  ( F `  y )  =  ( F `  t ) )
1918breq1d 4034 . . . . . . . . . . 11  |-  ( y  =  t  ->  (
( F `  y
)  <_  ( F `  u )  <->  ( F `  t )  <_  ( F `  u )
) )
2019cbvralv 2765 . . . . . . . . . 10  |-  ( A. y  e.  ( A [,] B ) ( F `
 y )  <_ 
( F `  u
)  <->  A. t  e.  ( A [,] B ) ( F `  t
)  <_  ( F `  u ) )
2117, 20sylib 190 . . . . . . . . 9  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. t  e.  ( A [,] B
) ( F `  t )  <_  ( F `  u )
)
2221ad2antrl 710 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A. t  e.  ( A [,] B ) ( F `  t )  <_  ( F `  u ) )
23 simplrl 738 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  u  e.  ( A [,] B ) )
24 simprr 735 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  -.  u  e.  { A ,  B } )
2510, 11, 12, 13, 15, 22, 23, 24rollelem 19330 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 )
2625expr 600 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  ( -.  u  e.  { A ,  B }  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
271ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A  e.  RR )
282ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  B  e.  RR )
293ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A  <  B )
30 cncff 18391 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
315, 30syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : ( A [,] B ) --> RR )
32 ffvelrn 5624 . . . . . . . . . . . . . 14  |-  ( ( F : ( A [,] B ) --> RR 
/\  u  e.  ( A [,] B ) )  ->  ( F `  u )  e.  RR )
3331, 32sylan 459 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  ( F `  u )  e.  RR )
3433renegcld 9205 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  -u ( F `
 u )  e.  RR )
35 eqid 2284 . . . . . . . . . . . 12  |-  ( u  e.  ( A [,] B )  |->  -u ( F `  u )
)  =  ( u  e.  ( A [,] B )  |->  -u ( F `  u )
)
3634, 35fmptd 5645 . . . . . . . . . . 11  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR )
37 ax-resscn 8789 . . . . . . . . . . . 12  |-  RR  C_  CC
38 ssid 3198 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
39 cncfss 18397 . . . . . . . . . . . . . . 15  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( A [,] B
) -cn-> RR )  C_  (
( A [,] B
) -cn-> CC ) )
4037, 38, 39mp2an 655 . . . . . . . . . . . . . 14  |-  ( ( A [,] B )
-cn-> RR )  C_  (
( A [,] B
) -cn-> CC )
4140, 5sseldi 3179 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
4235negfcncf 18416 . . . . . . . . . . . . 13  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> CC ) )
4341, 42syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> CC ) )
44 cncffvrn 18396 . . . . . . . . . . . 12  |-  ( ( RR  C_  CC  /\  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) )  e.  ( ( A [,] B )
-cn-> CC ) )  -> 
( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR ) )
4537, 43, 44sylancr 646 . . . . . . . . . . 11  |-  ( ph  ->  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR ) )
4636, 45mpbird 225 . . . . . . . . . 10  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4746ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4837a1i 12 . . . . . . . . . . . . . 14  |-  ( ph  ->  RR  C_  CC )
49 iccssre 10725 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
501, 2, 49syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A [,] B
)  C_  RR )
51 fss 5362 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( A [,] B ) --> RR 
/\  RR  C_  CC )  ->  F : ( A [,] B ) --> CC )
5231, 37, 51sylancl 645 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : ( A [,] B ) --> CC )
53 ffvelrn 5624 . . . . . . . . . . . . . . . 16  |-  ( ( F : ( A [,] B ) --> CC 
/\  u  e.  ( A [,] B ) )  ->  ( F `  u )  e.  CC )
5452, 53sylan 459 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  ( F `  u )  e.  CC )
5554negcld 9139 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  -u ( F `
 u )  e.  CC )
56 eqid 2284 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5756tgioo2 18303 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
58 iccntr 18320 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
591, 2, 58syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
6048, 50, 55, 57, 56, 59dvmptntr 19314 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( RR  _D  ( u  e.  ( A (,) B )  |->  -u ( F `  u )
) ) )
61 reex 8823 . . . . . . . . . . . . . . . 16  |-  RR  e.  _V
6261prid1 3735 . . . . . . . . . . . . . . 15  |-  RR  e.  { RR ,  CC }
6362a1i 12 . . . . . . . . . . . . . 14  |-  ( ph  ->  RR  e.  { RR ,  CC } )
64 ioossicc 10729 . . . . . . . . . . . . . . . 16  |-  ( A (,) B )  C_  ( A [,] B )
6564sseli 3177 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( A (,) B )  ->  u  e.  ( A [,] B
) )
6665, 54sylan2 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A (,) B ) )  ->  ( F `  u )  e.  CC )
67 fvex 5499 . . . . . . . . . . . . . . 15  |-  ( ( RR  _D  F ) `
 u )  e. 
_V
6867a1i 12 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  u )  e.  _V )
6931feqmptd 5536 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  =  ( u  e.  ( A [,] B )  |->  ( F `
 u ) ) )
7069oveq2d 5835 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
_D  ( u  e.  ( A [,] B
)  |->  ( F `  u ) ) ) )
71 dvf 19251 . . . . . . . . . . . . . . . . 17  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
7214feq2d 5345 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : ( A (,) B ) --> CC ) )
7371, 72mpbii 204 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
7473feqmptd 5536 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( u  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 u ) ) )
7548, 50, 54, 57, 56, 59dvmptntr 19314 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  ( F `  u ) ) )  =  ( RR  _D  ( u  e.  ( A (,) B )  |->  ( F `
 u ) ) ) )
7670, 74, 753eqtr3rd 2325 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A (,) B )  |->  ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  u )
) )
7763, 66, 68, 76dvmptneg 19309 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A (,) B )  |->  -u ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
7860, 77eqtrd 2316 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
7978dmeqd 4880 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  dom  (  u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
80 dmmptg 5168 . . . . . . . . . . . 12  |-  ( A. u  e.  ( A (,) B ) -u (
( RR  _D  F
) `  u )  e.  _V  ->  dom  (  u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)  =  ( A (,) B ) )
81 negex 9045 . . . . . . . . . . . . 13  |-  -u (
( RR  _D  F
) `  u )  e.  _V
8281a1i 12 . . . . . . . . . . . 12  |-  ( u  e.  ( A (,) B )  ->  -u (
( RR  _D  F
) `  u )  e.  _V )
8380, 82mprg 2613 . . . . . . . . . . 11  |-  dom  (  u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)  =  ( A (,) B )
8479, 83syl6eq 2332 . . . . . . . . . 10  |-  ( ph  ->  dom  ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( A (,) B ) )
8584ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  dom  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( A (,) B ) )
86 simpr 449 . . . . . . . . . . . . . 14  |-  ( ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  ( F `  v )  <_  ( F `  y
) )
8731ad2antrr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  F :
( A [,] B
) --> RR )
88 simplrr 739 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  v  e.  ( A [,] B ) )
89 ffvelrn 5624 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( A [,] B ) --> RR 
/\  v  e.  ( A [,] B ) )  ->  ( F `  v )  e.  RR )
9087, 88, 89syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  v )  e.  RR )
9131adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  F : ( A [,] B ) --> RR )
92 ffvelrn 5624 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( A [,] B ) --> RR 
/\  y  e.  ( A [,] B ) )  ->  ( F `  y )  e.  RR )
9391, 92sylan 459 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  y )  e.  RR )
9490, 93lenegd 9346 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  v )  <_  ( F `  y
)  <->  -u ( F `  y )  <_  -u ( F `  v )
) )
95 fveq2 5485 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  y  ->  ( F `  u )  =  ( F `  y ) )
9695negeqd 9041 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  y  ->  -u ( F `  u )  =  -u ( F `  y ) )
97 negex 9045 . . . . . . . . . . . . . . . . . 18  |-  -u ( F `  y )  e.  _V
9896, 35, 97fvmpt 5563 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( A [,] B )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  =  -u ( F `  y ) )
9998adantl 454 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  y )  =  -u ( F `  y ) )
100 fveq2 5485 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  v  ->  ( F `  u )  =  ( F `  v ) )
101100negeqd 9041 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  v  ->  -u ( F `  u )  =  -u ( F `  v ) )
102 negex 9045 . . . . . . . . . . . . . . . . . 18  |-  -u ( F `  v )  e.  _V
103101, 35, 102fvmpt 5563 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( A [,] B )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  =  -u ( F `  v ) )
10488, 103syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  v )  =  -u ( F `  v ) )
10599, 104breq12d 4037 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  <->  -u ( F `
 y )  <_  -u ( F `  v
) ) )
10694, 105bitr4d 249 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  v )  <_  ( F `  y
)  <->  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) ) )
10786, 106syl5ib 212 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) ) )
108107ralimdva 2622 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. y  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) ) )
109108imp 420 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  A. y  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) )
110 fveq2 5485 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  =  ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t ) )
111110breq1d 4034 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  <->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  t )  <_  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  v )
) )
112111cbvralv 2765 . . . . . . . . . . 11  |-  ( A. y  e.  ( A [,] B ) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  y )  <_  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  v )  <->  A. t  e.  ( A [,] B ) ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) )
113109, 112sylib 190 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  A. t  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  t )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) )
114113adantrr 699 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A. t  e.  ( A [,] B ) ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) )
115 simplrr 739 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
v  e.  ( A [,] B ) )
116 simprr 735 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  -.  v  e.  { A ,  B } )
11727, 28, 29, 47, 85, 114, 115, 116rollelem 19330 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0 )
11878fveq1d 5487 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  ( ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) `  x
) )
119 fveq2 5485 . . . . . . . . . . . . . . 15  |-  ( u  =  x  ->  (
( RR  _D  F
) `  u )  =  ( ( RR 
_D  F ) `  x ) )
120119negeqd 9041 . . . . . . . . . . . . . 14  |-  ( u  =  x  ->  -u (
( RR  _D  F
) `  u )  =  -u ( ( RR 
_D  F ) `  x ) )
121 eqid 2284 . . . . . . . . . . . . . 14  |-  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)  =  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)
122 negex 9045 . . . . . . . . . . . . . 14  |-  -u (
( RR  _D  F
) `  x )  e.  _V
123120, 121, 122fvmpt 5563 . . . . . . . . . . . . 13  |-  ( x  e.  ( A (,) B )  ->  (
( u  e.  ( A (,) B ) 
|->  -u ( ( RR 
_D  F ) `  u ) ) `  x )  =  -u ( ( RR  _D  F ) `  x
) )
124118, 123sylan9eq 2336 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  = 
-u ( ( RR 
_D  F ) `  x ) )
125124eqeq1d 2292 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0  <->  -u (
( RR  _D  F
) `  x )  =  0 ) )
12614eleq2d 2351 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  dom  ( RR  _D  F
)  <->  x  e.  ( A (,) B ) ) )
127126biimpar 473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  dom  ( RR  _D  F
) )
12871ffvelrni 5625 . . . . . . . . . . . . 13  |-  ( x  e.  dom  ( RR 
_D  F )  -> 
( ( RR  _D  F ) `  x
)  e.  CC )
129127, 128syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
130129negeq0d 9144 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  x )  =  0  <->  -u ( ( RR  _D  F ) `
 x )  =  0 ) )
131125, 130bitr4d 249 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0  <->  (
( RR  _D  F
) `  x )  =  0 ) )
132131rexbidva 2561 . . . . . . . . 9  |-  ( ph  ->  ( E. x  e.  ( A (,) B
) ( ( RR 
_D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  =  0  <->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
133132ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
( E. x  e.  ( A (,) B
) ( ( RR 
_D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  =  0  <->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
134117, 133mpbid 203 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 )
135134expr 600 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  ( -.  v  e.  { A ,  B }  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
136 vex 2792 . . . . . . . . . . 11  |-  u  e. 
_V
137136elpr 3659 . . . . . . . . . 10  |-  ( u  e.  { A ,  B }  <->  ( u  =  A  \/  u  =  B ) )
138 fveq2 5485 . . . . . . . . . . . 12  |-  ( u  =  A  ->  ( F `  u )  =  ( F `  A ) )
139138a1i 12 . . . . . . . . . . 11  |-  ( ph  ->  ( u  =  A  ->  ( F `  u )  =  ( F `  A ) ) )
140 rolle.e . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  A
)  =  ( F `
 B ) )
141140eqcomd 2289 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  B
)  =  ( F `
 A ) )
142 fveq2 5485 . . . . . . . . . . . . 13  |-  ( u  =  B  ->  ( F `  u )  =  ( F `  B ) )
143142eqeq1d 2292 . . . . . . . . . . . 12  |-  ( u  =  B  ->  (
( F `  u
)  =  ( F `
 A )  <->  ( F `  B )  =  ( F `  A ) ) )
144141, 143syl5ibrcom 215 . . . . . . . . . . 11  |-  ( ph  ->  ( u  =  B  ->  ( F `  u )  =  ( F `  A ) ) )
145139, 144jaod 371 . . . . . . . . . 10  |-  ( ph  ->  ( ( u  =  A  \/  u  =  B )  ->  ( F `  u )  =  ( F `  A ) ) )
146137, 145syl5bi 210 . . . . . . . . 9  |-  ( ph  ->  ( u  e.  { A ,  B }  ->  ( F `  u
)  =  ( F `
 A ) ) )
147 eleq1 2344 . . . . . . . . . . . 12  |-  ( u  =  v  ->  (
u  e.  { A ,  B }  <->  v  e.  { A ,  B }
) )
148100eqeq1d 2292 . . . . . . . . . . . 12  |-  ( u  =  v  ->  (
( F `  u
)  =  ( F `
 A )  <->  ( F `  v )  =  ( F `  A ) ) )
149147, 148imbi12d 313 . . . . . . . . . . 11  |-  ( u  =  v  ->  (
( u  e.  { A ,  B }  ->  ( F `  u
)  =  ( F `
 A ) )  <-> 
( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) ) )
150149imbi2d 309 . . . . . . . . . 10  |-  ( u  =  v  ->  (
( ph  ->  ( u  e.  { A ,  B }  ->  ( F `
 u )  =  ( F `  A
) ) )  <->  ( ph  ->  ( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) ) ) )
151150, 146chvarv 1958 . . . . . . . . 9  |-  ( ph  ->  ( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) )
152146, 151anim12d 548 . . . . . . . 8  |-  ( ph  ->  ( ( u  e. 
{ A ,  B }  /\  v  e.  { A ,  B }
)  ->  ( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) ) ) )
153152ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( u  e.  { A ,  B }  /\  v  e.  { A ,  B } )  -> 
( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) ) ) )
1541rexrd 8876 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR* )
1552rexrd 8876 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  RR* )
156 lbicc2 10746 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
157154, 155, 4, 156syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  ( A [,] B ) )
158 ffvelrn 5624 . . . . . . . . . . . . . . . 16  |-  ( ( F : ( A [,] B ) --> RR 
/\  A  e.  ( A [,] B ) )  ->  ( F `  A )  e.  RR )
15931, 157, 158syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F `  A
)  e.  RR )
160159ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  A )  e.  RR )
16193, 160letri3d 8956 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  y )  =  ( F `  A )  <->  ( ( F `  y )  <_  ( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) )
162 breq2 4028 . . . . . . . . . . . . . . 15  |-  ( ( F `  u )  =  ( F `  A )  ->  (
( F `  y
)  <_  ( F `  u )  <->  ( F `  y )  <_  ( F `  A )
) )
163 breq1 4027 . . . . . . . . . . . . . . 15  |-  ( ( F `  v )  =  ( F `  A )  ->  (
( F `  v
)  <_  ( F `  y )  <->  ( F `  A )  <_  ( F `  y )
) )
164162, 163bi2anan9 845 . . . . . . . . . . . . . 14  |-  ( ( ( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  <->  ( ( F `
 y )  <_ 
( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) )
165164bibi2d 311 . . . . . . . . . . . . 13  |-  ( ( ( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( ( F `
 y )  =  ( F `  A
)  <->  ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  <->  ( ( F `  y )  =  ( F `  A )  <->  ( ( F `  y )  <_  ( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) ) )
166161, 165syl5ibrcom 215 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( F `  y )  =  ( F `  A )  <-> 
( ( F `  y )  <_  ( F `  u )  /\  ( F `  v
)  <_  ( F `  y ) ) ) ) )
167166impancom 429 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  (
y  e.  ( A [,] B )  -> 
( ( F `  y )  =  ( F `  A )  <-> 
( ( F `  y )  <_  ( F `  u )  /\  ( F `  v
)  <_  ( F `  y ) ) ) ) )
168167imp 420 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  /\  y  e.  ( A [,] B
) )  ->  (
( F `  y
)  =  ( F `
 A )  <->  ( ( F `  y )  <_  ( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) ) )
169168ralbidva 2560 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( F `  y )  =  ( F `  A )  <->  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) ) )
170 ffn 5354 . . . . . . . . . . . . . 14  |-  ( F : ( A [,] B ) --> RR  ->  F  Fn  ( A [,] B ) )
17131, 170syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  ( A [,] B ) )
172 fnconstg 5394 . . . . . . . . . . . . . 14  |-  ( ( F `  A )  e.  RR  ->  (
( A [,] B
)  X.  { ( F `  A ) } )  Fn  ( A [,] B ) )
173159, 172syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A [,] B )  X.  {
( F `  A
) } )  Fn  ( A [,] B
) )
174 eqfnfv 5583 . . . . . . . . . . . . 13  |-  ( ( F  Fn  ( A [,] B )  /\  ( ( A [,] B )  X.  {
( F `  A
) } )  Fn  ( A [,] B
) )  ->  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  <->  A. y  e.  ( A [,] B ) ( F `  y )  =  ( ( ( A [,] B )  X.  { ( F `
 A ) } ) `  y ) ) )
175171, 173, 174syl2anc 644 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( ( ( A [,] B )  X.  {
( F `  A
) } ) `  y ) ) )
176 fvex 5499 . . . . . . . . . . . . . . 15  |-  ( F `
 A )  e. 
_V
177176fvconst2 5690 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A [,] B )  ->  (
( ( A [,] B )  X.  {
( F `  A
) } ) `  y )  =  ( F `  A ) )
178177eqeq2d 2295 . . . . . . . . . . . . 13  |-  ( y  e.  ( A [,] B )  ->  (
( F `  y
)  =  ( ( ( A [,] B
)  X.  { ( F `  A ) } ) `  y
)  <->  ( F `  y )  =  ( F `  A ) ) )
179178ralbiia 2576 . . . . . . . . . . . 12  |-  ( A. y  e.  ( A [,] B ) ( F `
 y )  =  ( ( ( A [,] B )  X. 
{ ( F `  A ) } ) `
 y )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A ) )
180175, 179syl6bb 254 . . . . . . . . . . 11  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A ) ) )
181 fconstmpt 4731 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A [,] B )  X.  { ( F `
 A ) } )  =  ( u  e.  ( A [,] B )  |->  ( F `
 A ) )
182181eqeq2i 2294 . . . . . . . . . . . . . . . . . . 19  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  <-> 
F  =  ( u  e.  ( A [,] B )  |->  ( F `
 A ) ) )
183182biimpi 188 . . . . . . . . . . . . . . . . . 18  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  ->  F  =  ( u  e.  ( A [,] B )  |->  ( F `  A ) ) )
184183oveq2d 5835 . . . . . . . . . . . . . . . . 17  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  ->  ( RR  _D  F )  =  ( RR  _D  ( u  e.  ( A [,] B )  |->  ( F `
 A ) ) ) )
185159recnd 8856 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( F `  A
)  e.  CC )
186185adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  RR )  ->  ( F `
 A )  e.  CC )
187 0cn 8826 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  CC
188187a1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  RR )  ->  0  e.  CC )
18963, 185dvmptc 19301 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( RR  _D  (
u  e.  RR  |->  ( F `  A ) ) )  =  ( u  e.  RR  |->  0 ) )
19063, 186, 188, 189, 50, 57, 56, 59dvmptres2 19305 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  ( F `  A ) ) )  =  ( u  e.  ( A (,) B )  |->  0 ) )
191184, 190sylan9eqr 2338 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  ( RR  _D  F )  =  ( u  e.  ( A (,) B )  |->  0 ) )
192191fveq1d 5487 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  ( ( RR 
_D  F ) `  x )  =  ( ( u  e.  ( A (,) B ) 
|->  0 ) `  x
) )
193 eqidd 2285 . . . . . . . . . . . . . . . 16  |-  ( u  =  x  ->  0  =  0 )
194 eqid 2284 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( A (,) B )  |->  0 )  =  ( u  e.  ( A (,) B
)  |->  0 )
195 c0ex 8827 . . . . . . . . . . . . . . . 16  |-  0  e.  _V
196193, 194, 195fvmpt 5563 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( A (,) B )  ->  (
( u  e.  ( A (,) B ) 
|->  0 ) `  x
)  =  0 )
197192, 196sylan9eq 2336 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } ) )  /\  x  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  x )  =  0 )
198197ralrimiva 2627 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  A. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
199 ioon0 10676 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =/=  (/)  <->  A  <  B ) )
200154, 155, 199syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A (,) B )  =/=  (/)  <->  A  <  B ) )
2013, 200mpbird 225 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A (,) B
)  =/=  (/) )
202 r19.2z 3544 . . . . . . . . . . . . . 14  |-  ( ( ( A (,) B
)  =/=  (/)  /\  A. x  e.  ( A (,) B ) ( ( RR  _D  F ) `
 x )  =  0 )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
203201, 202sylan 459 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
204198, 203syldan 458 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
205204ex 425 . . . . . . . . . . 11  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
206180, 205sylbird 228 . . . . . . . . . 10  |-  ( ph  ->  ( A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
207206ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( F `  y )  =  ( F `  A )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
208169, 207sylbird 228 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
209208impancom 429 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
210153, 209syld 42 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( u  e.  { A ,  B }  /\  v  e.  { A ,  B } )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
21126, 135, 210ecased 912 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
212211ex 425 . . . 4  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
2139, 212syl5bir 211 . . 3  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  (
( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
214213rexlimdvva 2675 . 2  |-  ( ph  ->  ( E. u  e.  ( A [,] B
) E. v  e.  ( A [,] B
) ( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
2158, 214mpd 16 1  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2447   A.wral 2544   E.wrex 2545   _Vcvv 2789    C_ wss 3153   (/)c0 3456   {csn 3641   {cpr 3642   class class class wbr 4024    e. cmpt 4078    X. cxp 4686   dom cdm 4688   ran crn 4689    Fn wfn 5216   -->wf 5217   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   RR*cxr 8861    < clt 8862    <_ cle 8863   -ucneg 9033   (,)cioo 10650   [,]cicc 10653   TopOpenctopn 13320   topGenctg 13336  ℂfldccnfld 16371   intcnt 16748   -cn->ccncf 18374    _D cdv 19207
This theorem is referenced by:  cmvth  19332  lhop1lem  19354
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-seq 11041  df-exp 11099  df-hash 11332  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-lp 16862  df-perf 16863  df-cn 16951  df-cnp 16952  df-haus 17037  df-cmp 17108  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-limc 19210  df-dv 19211
  Copyright terms: Public domain W3C validator