MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rolle Unicode version

Theorem rolle 19743
Description: Rolle's theorem. If  F is a real continuous function on  [ A ,  B ] which is differentiable on  ( A ,  B
), and  F ( A )  =  F ( B ), then there is some  x  e.  ( A ,  B ) such that  ( RR  _D  F ) `  x  =  0. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
rolle.a  |-  ( ph  ->  A  e.  RR )
rolle.b  |-  ( ph  ->  B  e.  RR )
rolle.lt  |-  ( ph  ->  A  <  B )
rolle.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
rolle.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
rolle.e  |-  ( ph  ->  ( F `  A
)  =  ( F `
 B ) )
Assertion
Ref Expression
rolle  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Distinct variable groups:    x, A    ph, x    x, B    x, F

Proof of Theorem rolle
Dummy variables  u  t  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rolle.a . . . 4  |-  ( ph  ->  A  e.  RR )
2 rolle.b . . . 4  |-  ( ph  ->  B  e.  RR )
3 rolle.lt . . . . 5  |-  ( ph  ->  A  <  B )
41, 2, 3ltled 9155 . . . 4  |-  ( ph  ->  A  <_  B )
5 rolle.f . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
61, 2, 4, 5evthicc 19225 . . 3  |-  ( ph  ->  ( E. u  e.  ( A [,] B
) A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  E. v  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
7 reeanv 2820 . . 3  |-  ( E. u  e.  ( A [,] B ) E. v  e.  ( A [,] B ) ( A. y  e.  ( A [,] B ) ( F `  y
)  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `
 v )  <_ 
( F `  y
) )  <->  ( E. u  e.  ( A [,] B ) A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  E. v  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
86, 7sylibr 204 . 2  |-  ( ph  ->  E. u  e.  ( A [,] B ) E. v  e.  ( A [,] B ) ( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
9 r19.26 2783 . . . 4  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  <->  ( A. y  e.  ( A [,] B ) ( F `
 y )  <_ 
( F `  u
)  /\  A. y  e.  ( A [,] B
) ( F `  v )  <_  ( F `  y )
) )
101ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A  e.  RR )
112ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  B  e.  RR )
123ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A  <  B )
135ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  F  e.  ( ( A [,] B ) -cn-> RR ) )
14 rolle.d . . . . . . . . 9  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
1514ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  dom  ( RR  _D  F
)  =  ( A (,) B ) )
16 simpl 444 . . . . . . . . . . 11  |-  ( ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  ( F `  y )  <_  ( F `  u
) )
1716ralimi 2726 . . . . . . . . . 10  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )
)
18 fveq2 5670 . . . . . . . . . . . 12  |-  ( y  =  t  ->  ( F `  y )  =  ( F `  t ) )
1918breq1d 4165 . . . . . . . . . . 11  |-  ( y  =  t  ->  (
( F `  y
)  <_  ( F `  u )  <->  ( F `  t )  <_  ( F `  u )
) )
2019cbvralv 2877 . . . . . . . . . 10  |-  ( A. y  e.  ( A [,] B ) ( F `
 y )  <_ 
( F `  u
)  <->  A. t  e.  ( A [,] B ) ( F `  t
)  <_  ( F `  u ) )
2117, 20sylib 189 . . . . . . . . 9  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. t  e.  ( A [,] B
) ( F `  t )  <_  ( F `  u )
)
2221ad2antrl 709 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A. t  e.  ( A [,] B ) ( F `  t )  <_  ( F `  u ) )
23 simplrl 737 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  u  e.  ( A [,] B ) )
24 simprr 734 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  -.  u  e.  { A ,  B } )
2510, 11, 12, 13, 15, 22, 23, 24rollelem 19742 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 )
2625expr 599 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  ( -.  u  e.  { A ,  B }  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
271ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A  e.  RR )
282ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  B  e.  RR )
293ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A  <  B )
30 cncff 18796 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
315, 30syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : ( A [,] B ) --> RR )
3231ffvelrnda 5811 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  ( F `  u )  e.  RR )
3332renegcld 9398 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  -u ( F `
 u )  e.  RR )
34 eqid 2389 . . . . . . . . . . . 12  |-  ( u  e.  ( A [,] B )  |->  -u ( F `  u )
)  =  ( u  e.  ( A [,] B )  |->  -u ( F `  u )
)
3533, 34fmptd 5834 . . . . . . . . . . 11  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR )
36 ax-resscn 8982 . . . . . . . . . . . 12  |-  RR  C_  CC
37 ssid 3312 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
38 cncfss 18802 . . . . . . . . . . . . . . 15  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( A [,] B
) -cn-> RR )  C_  (
( A [,] B
) -cn-> CC ) )
3936, 37, 38mp2an 654 . . . . . . . . . . . . . 14  |-  ( ( A [,] B )
-cn-> RR )  C_  (
( A [,] B
) -cn-> CC )
4039, 5sseldi 3291 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
4134negfcncf 18822 . . . . . . . . . . . . 13  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> CC ) )
4240, 41syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> CC ) )
43 cncffvrn 18801 . . . . . . . . . . . 12  |-  ( ( RR  C_  CC  /\  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) )  e.  ( ( A [,] B )
-cn-> CC ) )  -> 
( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR ) )
4436, 42, 43sylancr 645 . . . . . . . . . . 11  |-  ( ph  ->  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR ) )
4535, 44mpbird 224 . . . . . . . . . 10  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4645ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4736a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  RR  C_  CC )
48 iccssre 10926 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
491, 2, 48syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A [,] B
)  C_  RR )
50 fss 5541 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( A [,] B ) --> RR 
/\  RR  C_  CC )  ->  F : ( A [,] B ) --> CC )
5131, 36, 50sylancl 644 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : ( A [,] B ) --> CC )
5251ffvelrnda 5811 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  ( F `  u )  e.  CC )
5352negcld 9332 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  -u ( F `
 u )  e.  CC )
54 eqid 2389 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5554tgioo2 18707 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
56 iccntr 18725 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
571, 2, 56syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
5847, 49, 53, 55, 54, 57dvmptntr 19726 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( RR  _D  ( u  e.  ( A (,) B )  |->  -u ( F `  u )
) ) )
59 reex 9016 . . . . . . . . . . . . . . . 16  |-  RR  e.  _V
6059prid1 3857 . . . . . . . . . . . . . . 15  |-  RR  e.  { RR ,  CC }
6160a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  RR  e.  { RR ,  CC } )
62 ioossicc 10930 . . . . . . . . . . . . . . . 16  |-  ( A (,) B )  C_  ( A [,] B )
6362sseli 3289 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( A (,) B )  ->  u  e.  ( A [,] B
) )
6463, 52sylan2 461 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A (,) B ) )  ->  ( F `  u )  e.  CC )
65 fvex 5684 . . . . . . . . . . . . . . 15  |-  ( ( RR  _D  F ) `
 u )  e. 
_V
6665a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  u )  e.  _V )
6731feqmptd 5720 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  =  ( u  e.  ( A [,] B )  |->  ( F `
 u ) ) )
6867oveq2d 6038 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
_D  ( u  e.  ( A [,] B
)  |->  ( F `  u ) ) ) )
69 dvf 19663 . . . . . . . . . . . . . . . . 17  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
7014feq2d 5523 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : ( A (,) B ) --> CC ) )
7169, 70mpbii 203 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
7271feqmptd 5720 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( u  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 u ) ) )
7347, 49, 52, 55, 54, 57dvmptntr 19726 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  ( F `  u ) ) )  =  ( RR  _D  ( u  e.  ( A (,) B )  |->  ( F `
 u ) ) ) )
7468, 72, 733eqtr3rd 2430 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A (,) B )  |->  ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  u )
) )
7561, 64, 66, 74dvmptneg 19721 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A (,) B )  |->  -u ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
7658, 75eqtrd 2421 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
7776dmeqd 5014 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  dom  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
78 dmmptg 5309 . . . . . . . . . . . 12  |-  ( A. u  e.  ( A (,) B ) -u (
( RR  _D  F
) `  u )  e.  _V  ->  dom  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)  =  ( A (,) B ) )
79 negex 9238 . . . . . . . . . . . . 13  |-  -u (
( RR  _D  F
) `  u )  e.  _V
8079a1i 11 . . . . . . . . . . . 12  |-  ( u  e.  ( A (,) B )  ->  -u (
( RR  _D  F
) `  u )  e.  _V )
8178, 80mprg 2720 . . . . . . . . . . 11  |-  dom  (
u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) )  =  ( A (,) B )
8277, 81syl6eq 2437 . . . . . . . . . 10  |-  ( ph  ->  dom  ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( A (,) B ) )
8382ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  dom  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( A (,) B ) )
84 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  ( F `  v )  <_  ( F `  y
) )
8531ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  F :
( A [,] B
) --> RR )
86 simplrr 738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  v  e.  ( A [,] B ) )
8785, 86ffvelrnd 5812 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  v )  e.  RR )
8831adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  F : ( A [,] B ) --> RR )
8988ffvelrnda 5811 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  y )  e.  RR )
9087, 89lenegd 9539 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  v )  <_  ( F `  y
)  <->  -u ( F `  y )  <_  -u ( F `  v )
) )
91 fveq2 5670 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  y  ->  ( F `  u )  =  ( F `  y ) )
9291negeqd 9234 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  y  ->  -u ( F `  u )  =  -u ( F `  y ) )
93 negex 9238 . . . . . . . . . . . . . . . . . 18  |-  -u ( F `  y )  e.  _V
9492, 34, 93fvmpt 5747 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( A [,] B )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  =  -u ( F `  y ) )
9594adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  y )  =  -u ( F `  y ) )
96 fveq2 5670 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  v  ->  ( F `  u )  =  ( F `  v ) )
9796negeqd 9234 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  v  ->  -u ( F `  u )  =  -u ( F `  v ) )
98 negex 9238 . . . . . . . . . . . . . . . . . 18  |-  -u ( F `  v )  e.  _V
9997, 34, 98fvmpt 5747 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( A [,] B )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  =  -u ( F `  v ) )
10086, 99syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  v )  =  -u ( F `  v ) )
10195, 100breq12d 4168 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  <->  -u ( F `
 y )  <_  -u ( F `  v
) ) )
10290, 101bitr4d 248 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  v )  <_  ( F `  y
)  <->  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) ) )
10384, 102syl5ib 211 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) ) )
104103ralimdva 2729 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. y  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) ) )
105104imp 419 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  A. y  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) )
106 fveq2 5670 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  =  ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t ) )
107106breq1d 4165 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  <->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  t )  <_  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  v )
) )
108107cbvralv 2877 . . . . . . . . . . 11  |-  ( A. y  e.  ( A [,] B ) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  y )  <_  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  v )  <->  A. t  e.  ( A [,] B ) ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) )
109105, 108sylib 189 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  A. t  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  t )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) )
110109adantrr 698 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A. t  e.  ( A [,] B ) ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) )
111 simplrr 738 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
v  e.  ( A [,] B ) )
112 simprr 734 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  -.  v  e.  { A ,  B } )
11327, 28, 29, 46, 83, 110, 111, 112rollelem 19742 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0 )
11476fveq1d 5672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  ( ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) `  x
) )
115 fveq2 5670 . . . . . . . . . . . . . . 15  |-  ( u  =  x  ->  (
( RR  _D  F
) `  u )  =  ( ( RR 
_D  F ) `  x ) )
116115negeqd 9234 . . . . . . . . . . . . . 14  |-  ( u  =  x  ->  -u (
( RR  _D  F
) `  u )  =  -u ( ( RR 
_D  F ) `  x ) )
117 eqid 2389 . . . . . . . . . . . . . 14  |-  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)  =  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)
118 negex 9238 . . . . . . . . . . . . . 14  |-  -u (
( RR  _D  F
) `  x )  e.  _V
119116, 117, 118fvmpt 5747 . . . . . . . . . . . . 13  |-  ( x  e.  ( A (,) B )  ->  (
( u  e.  ( A (,) B ) 
|->  -u ( ( RR 
_D  F ) `  u ) ) `  x )  =  -u ( ( RR  _D  F ) `  x
) )
120114, 119sylan9eq 2441 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  = 
-u ( ( RR 
_D  F ) `  x ) )
121120eqeq1d 2397 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0  <->  -u (
( RR  _D  F
) `  x )  =  0 ) )
12214eleq2d 2456 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  dom  ( RR  _D  F
)  <->  x  e.  ( A (,) B ) ) )
123122biimpar 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  dom  ( RR  _D  F
) )
12469ffvelrni 5810 . . . . . . . . . . . . 13  |-  ( x  e.  dom  ( RR 
_D  F )  -> 
( ( RR  _D  F ) `  x
)  e.  CC )
125123, 124syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
126125negeq0d 9337 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  x )  =  0  <->  -u ( ( RR  _D  F ) `
 x )  =  0 ) )
127121, 126bitr4d 248 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0  <->  (
( RR  _D  F
) `  x )  =  0 ) )
128127rexbidva 2668 . . . . . . . . 9  |-  ( ph  ->  ( E. x  e.  ( A (,) B
) ( ( RR 
_D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  =  0  <->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
129128ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
( E. x  e.  ( A (,) B
) ( ( RR 
_D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  =  0  <->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
130113, 129mpbid 202 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 )
131130expr 599 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  ( -.  v  e.  { A ,  B }  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
132 vex 2904 . . . . . . . . . . 11  |-  u  e. 
_V
133132elpr 3777 . . . . . . . . . 10  |-  ( u  e.  { A ,  B }  <->  ( u  =  A  \/  u  =  B ) )
134 fveq2 5670 . . . . . . . . . . . 12  |-  ( u  =  A  ->  ( F `  u )  =  ( F `  A ) )
135134a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( u  =  A  ->  ( F `  u )  =  ( F `  A ) ) )
136 rolle.e . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  A
)  =  ( F `
 B ) )
137136eqcomd 2394 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  B
)  =  ( F `
 A ) )
138 fveq2 5670 . . . . . . . . . . . . 13  |-  ( u  =  B  ->  ( F `  u )  =  ( F `  B ) )
139138eqeq1d 2397 . . . . . . . . . . . 12  |-  ( u  =  B  ->  (
( F `  u
)  =  ( F `
 A )  <->  ( F `  B )  =  ( F `  A ) ) )
140137, 139syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ph  ->  ( u  =  B  ->  ( F `  u )  =  ( F `  A ) ) )
141135, 140jaod 370 . . . . . . . . . 10  |-  ( ph  ->  ( ( u  =  A  \/  u  =  B )  ->  ( F `  u )  =  ( F `  A ) ) )
142133, 141syl5bi 209 . . . . . . . . 9  |-  ( ph  ->  ( u  e.  { A ,  B }  ->  ( F `  u
)  =  ( F `
 A ) ) )
143 eleq1 2449 . . . . . . . . . . . 12  |-  ( u  =  v  ->  (
u  e.  { A ,  B }  <->  v  e.  { A ,  B }
) )
14496eqeq1d 2397 . . . . . . . . . . . 12  |-  ( u  =  v  ->  (
( F `  u
)  =  ( F `
 A )  <->  ( F `  v )  =  ( F `  A ) ) )
145143, 144imbi12d 312 . . . . . . . . . . 11  |-  ( u  =  v  ->  (
( u  e.  { A ,  B }  ->  ( F `  u
)  =  ( F `
 A ) )  <-> 
( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) ) )
146145imbi2d 308 . . . . . . . . . 10  |-  ( u  =  v  ->  (
( ph  ->  ( u  e.  { A ,  B }  ->  ( F `
 u )  =  ( F `  A
) ) )  <->  ( ph  ->  ( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) ) ) )
147146, 142chvarv 2049 . . . . . . . . 9  |-  ( ph  ->  ( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) )
148142, 147anim12d 547 . . . . . . . 8  |-  ( ph  ->  ( ( u  e. 
{ A ,  B }  /\  v  e.  { A ,  B }
)  ->  ( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) ) ) )
149148ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( u  e.  { A ,  B }  /\  v  e.  { A ,  B } )  -> 
( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) ) ) )
1501rexrd 9069 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR* )
1512rexrd 9069 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  RR* )
152 lbicc2 10947 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
153150, 151, 4, 152syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  ( A [,] B ) )
15431, 153ffvelrnd 5812 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F `  A
)  e.  RR )
155154ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  A )  e.  RR )
15689, 155letri3d 9149 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  y )  =  ( F `  A )  <->  ( ( F `  y )  <_  ( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) )
157 breq2 4159 . . . . . . . . . . . . . . 15  |-  ( ( F `  u )  =  ( F `  A )  ->  (
( F `  y
)  <_  ( F `  u )  <->  ( F `  y )  <_  ( F `  A )
) )
158 breq1 4158 . . . . . . . . . . . . . . 15  |-  ( ( F `  v )  =  ( F `  A )  ->  (
( F `  v
)  <_  ( F `  y )  <->  ( F `  A )  <_  ( F `  y )
) )
159157, 158bi2anan9 844 . . . . . . . . . . . . . 14  |-  ( ( ( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  <->  ( ( F `
 y )  <_ 
( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) )
160159bibi2d 310 . . . . . . . . . . . . 13  |-  ( ( ( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( ( F `
 y )  =  ( F `  A
)  <->  ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  <->  ( ( F `  y )  =  ( F `  A )  <->  ( ( F `  y )  <_  ( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) ) )
161156, 160syl5ibrcom 214 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( F `  y )  =  ( F `  A )  <-> 
( ( F `  y )  <_  ( F `  u )  /\  ( F `  v
)  <_  ( F `  y ) ) ) ) )
162161impancom 428 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  (
y  e.  ( A [,] B )  -> 
( ( F `  y )  =  ( F `  A )  <-> 
( ( F `  y )  <_  ( F `  u )  /\  ( F `  v
)  <_  ( F `  y ) ) ) ) )
163162imp 419 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  /\  y  e.  ( A [,] B
) )  ->  (
( F `  y
)  =  ( F `
 A )  <->  ( ( F `  y )  <_  ( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) ) )
164163ralbidva 2667 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( F `  y )  =  ( F `  A )  <->  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) ) )
165 ffn 5533 . . . . . . . . . . . . . 14  |-  ( F : ( A [,] B ) --> RR  ->  F  Fn  ( A [,] B ) )
16631, 165syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  ( A [,] B ) )
167 fnconstg 5573 . . . . . . . . . . . . . 14  |-  ( ( F `  A )  e.  RR  ->  (
( A [,] B
)  X.  { ( F `  A ) } )  Fn  ( A [,] B ) )
168154, 167syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A [,] B )  X.  {
( F `  A
) } )  Fn  ( A [,] B
) )
169 eqfnfv 5768 . . . . . . . . . . . . 13  |-  ( ( F  Fn  ( A [,] B )  /\  ( ( A [,] B )  X.  {
( F `  A
) } )  Fn  ( A [,] B
) )  ->  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  <->  A. y  e.  ( A [,] B ) ( F `  y )  =  ( ( ( A [,] B )  X.  { ( F `
 A ) } ) `  y ) ) )
170166, 168, 169syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( ( ( A [,] B )  X.  {
( F `  A
) } ) `  y ) ) )
171 fvex 5684 . . . . . . . . . . . . . . 15  |-  ( F `
 A )  e. 
_V
172171fvconst2 5888 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A [,] B )  ->  (
( ( A [,] B )  X.  {
( F `  A
) } ) `  y )  =  ( F `  A ) )
173172eqeq2d 2400 . . . . . . . . . . . . 13  |-  ( y  e.  ( A [,] B )  ->  (
( F `  y
)  =  ( ( ( A [,] B
)  X.  { ( F `  A ) } ) `  y
)  <->  ( F `  y )  =  ( F `  A ) ) )
174173ralbiia 2683 . . . . . . . . . . . 12  |-  ( A. y  e.  ( A [,] B ) ( F `
 y )  =  ( ( ( A [,] B )  X. 
{ ( F `  A ) } ) `
 y )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A ) )
175170, 174syl6bb 253 . . . . . . . . . . 11  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A ) ) )
176 fconstmpt 4863 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A [,] B )  X.  { ( F `
 A ) } )  =  ( u  e.  ( A [,] B )  |->  ( F `
 A ) )
177176eqeq2i 2399 . . . . . . . . . . . . . . . . . . 19  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  <-> 
F  =  ( u  e.  ( A [,] B )  |->  ( F `
 A ) ) )
178177biimpi 187 . . . . . . . . . . . . . . . . . 18  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  ->  F  =  ( u  e.  ( A [,] B )  |->  ( F `  A ) ) )
179178oveq2d 6038 . . . . . . . . . . . . . . . . 17  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  ->  ( RR  _D  F )  =  ( RR  _D  ( u  e.  ( A [,] B )  |->  ( F `
 A ) ) ) )
180154recnd 9049 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( F `  A
)  e.  CC )
181180adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  RR )  ->  ( F `
 A )  e.  CC )
182 0cn 9019 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  CC
183182a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  RR )  ->  0  e.  CC )
18461, 180dvmptc 19713 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( RR  _D  (
u  e.  RR  |->  ( F `  A ) ) )  =  ( u  e.  RR  |->  0 ) )
18561, 181, 183, 184, 49, 55, 54, 57dvmptres2 19717 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  ( F `  A ) ) )  =  ( u  e.  ( A (,) B )  |->  0 ) )
186179, 185sylan9eqr 2443 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  ( RR  _D  F )  =  ( u  e.  ( A (,) B )  |->  0 ) )
187186fveq1d 5672 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  ( ( RR 
_D  F ) `  x )  =  ( ( u  e.  ( A (,) B ) 
|->  0 ) `  x
) )
188 eqidd 2390 . . . . . . . . . . . . . . . 16  |-  ( u  =  x  ->  0  =  0 )
189 eqid 2389 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( A (,) B )  |->  0 )  =  ( u  e.  ( A (,) B
)  |->  0 )
190 c0ex 9020 . . . . . . . . . . . . . . . 16  |-  0  e.  _V
191188, 189, 190fvmpt 5747 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( A (,) B )  ->  (
( u  e.  ( A (,) B ) 
|->  0 ) `  x
)  =  0 )
192187, 191sylan9eq 2441 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } ) )  /\  x  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  x )  =  0 )
193192ralrimiva 2734 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  A. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
194 ioon0 10876 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =/=  (/)  <->  A  <  B ) )
195150, 151, 194syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A (,) B )  =/=  (/)  <->  A  <  B ) )
1963, 195mpbird 224 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A (,) B
)  =/=  (/) )
197 r19.2z 3662 . . . . . . . . . . . . . 14  |-  ( ( ( A (,) B
)  =/=  (/)  /\  A. x  e.  ( A (,) B ) ( ( RR  _D  F ) `
 x )  =  0 )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
198196, 197sylan 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
199193, 198syldan 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
200199ex 424 . . . . . . . . . . 11  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
201175, 200sylbird 227 . . . . . . . . . 10  |-  ( ph  ->  ( A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
202201ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( F `  y )  =  ( F `  A )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
203164, 202sylbird 227 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
204203impancom 428 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
205149, 204syld 42 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( u  e.  { A ,  B }  /\  v  e.  { A ,  B } )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
20626, 131, 205ecased 911 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
207206ex 424 . . . 4  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
2089, 207syl5bir 210 . . 3  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  (
( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
209208rexlimdvva 2782 . 2  |-  ( ph  ->  ( E. u  e.  ( A [,] B
) E. v  e.  ( A [,] B
) ( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
2108, 209mpd 15 1  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2552   A.wral 2651   E.wrex 2652   _Vcvv 2901    C_ wss 3265   (/)c0 3573   {csn 3759   {cpr 3760   class class class wbr 4155    e. cmpt 4209    X. cxp 4818   dom cdm 4820   ran crn 4821    Fn wfn 5391   -->wf 5392   ` cfv 5396  (class class class)co 6022   CCcc 8923   RRcr 8924   0cc0 8925   RR*cxr 9054    < clt 9055    <_ cle 9056   -ucneg 9226   (,)cioo 10850   [,]cicc 10853   TopOpenctopn 13578   topGenctg 13594  ℂfldccnfld 16628   intcnt 17006   -cn->ccncf 18779    _D cdv 19619
This theorem is referenced by:  cmvth  19744  lhop1lem  19766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003  ax-addf 9004  ax-mulf 9005
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-2o 6663  df-oadd 6666  df-er 6843  df-map 6958  df-pm 6959  df-ixp 7002  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-fi 7353  df-sup 7383  df-oi 7414  df-card 7761  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-10 10000  df-n0 10156  df-z 10217  df-dec 10317  df-uz 10423  df-q 10509  df-rp 10547  df-xneg 10644  df-xadd 10645  df-xmul 10646  df-ioo 10854  df-ico 10856  df-icc 10857  df-fz 10978  df-fzo 11068  df-seq 11253  df-exp 11312  df-hash 11548  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-starv 13473  df-sca 13474  df-vsca 13475  df-tset 13477  df-ple 13478  df-ds 13480  df-unif 13481  df-hom 13482  df-cco 13483  df-rest 13579  df-topn 13580  df-topgen 13596  df-pt 13597  df-prds 13600  df-xrs 13655  df-0g 13656  df-gsum 13657  df-qtop 13662  df-imas 13663  df-xps 13665  df-mre 13740  df-mrc 13741  df-acs 13743  df-mnd 14619  df-submnd 14668  df-mulg 14744  df-cntz 15045  df-cmn 15343  df-xmet 16621  df-met 16622  df-bl 16623  df-mopn 16624  df-fbas 16625  df-fg 16626  df-cnfld 16629  df-top 16888  df-bases 16890  df-topon 16891  df-topsp 16892  df-cld 17008  df-ntr 17009  df-cls 17010  df-nei 17087  df-lp 17125  df-perf 17126  df-cn 17215  df-cnp 17216  df-haus 17303  df-cmp 17374  df-tx 17517  df-hmeo 17710  df-fil 17801  df-fm 17893  df-flim 17894  df-flf 17895  df-xms 18261  df-ms 18262  df-tms 18263  df-cncf 18781  df-limc 19622  df-dv 19623
  Copyright terms: Public domain W3C validator