MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpaddcld Structured version   Unicode version

Theorem rpaddcld 10653
Description: Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
rpaddcld.1  |-  ( ph  ->  B  e.  RR+ )
Assertion
Ref Expression
rpaddcld  |-  ( ph  ->  ( A  +  B
)  e.  RR+ )

Proof of Theorem rpaddcld
StepHypRef Expression
1 rpred.1 . 2  |-  ( ph  ->  A  e.  RR+ )
2 rpaddcld.1 . 2  |-  ( ph  ->  B  e.  RR+ )
3 rpaddcl 10622 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  +  B )  e.  RR+ )
41, 2, 3syl2anc 643 1  |-  ( ph  ->  ( A  +  B
)  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725  (class class class)co 6073    + caddc 8983   RR+crp 10602
This theorem is referenced by:  xov1plusxeqvd  11031  sqrlem7  12044  rpcoshcl  12748  isosctrlem2  20653  pntrlog2bndlem2  21262  pntrlog2bndlem3  21263  pntrlog2bndlem4  21264  pntibndlem3  21276  pntlema  21280  pntlemb  21281  padicabv  21314  ubthlem2  22363  lgamucov  24812  relgamcl  24836  iprodgam  25309  faclimlem1  25352  faclimlem3  25354  faclim  25355  iprodfac  25356  heiborlem6  26479  pell1qrgaplem  26890  pell14qrgapw  26893  wallispilem4  27748  stirlinglem1  27754  stirlinglem5  27758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-rp 10603
  Copyright terms: Public domain W3C validator