MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogcld Unicode version

Theorem rplogcld 20391
Description: Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
relogefd.1  |-  ( ph  ->  A  e.  RR )
rplogcld.2  |-  ( ph  ->  1  <  A )
Assertion
Ref Expression
rplogcld  |-  ( ph  ->  ( log `  A
)  e.  RR+ )

Proof of Theorem rplogcld
StepHypRef Expression
1 relogefd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 rplogcld.2 . 2  |-  ( ph  ->  1  <  A )
3 rplogcl 20366 . 2  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( log `  A
)  e.  RR+ )
41, 2, 3syl2anc 643 1  |-  ( ph  ->  ( log `  A
)  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1717   class class class wbr 4153   ` cfv 5394   RRcr 8922   1c1 8924    < clt 9053   RR+crp 10544   logclog 20319
This theorem is referenced by:  divlogrlim  20393  logno1  20394  cxploglim  20683  cxploglim2  20684  emcllem4  20704  emcllem6  20706  chtge0  20762  isppw  20764  chtwordi  20806  fsumvma2  20865  chpval2  20869  chpchtsum  20870  chpub  20871  bposlem1  20935  chebbnd1lem1  21030  chebbnd1lem3  21032  chebbnd1  21033  chtppilimlem1  21034  chtppilimlem2  21035  chtppilim  21036  chebbnd2  21038  chto1lb  21039  rplogsumlem2  21046  rpvmasumlem  21048  vmalogdivsum2  21099  vmalogdivsum  21100  2vmadivsumlem  21101  chpdifbndlem1  21114  selberg3lem1  21118  selberg3  21120  selberg4lem1  21121  selberg4  21122  selberg3r  21130  selberg4r  21131  selberg34r  21132  pntrlog2bndlem1  21138  pntrlog2bndlem2  21139  pntrlog2bndlem3  21140  pntrlog2bndlem4  21141  pntrlog2bndlem5  21142  pntrlog2bndlem6  21144  pntrlog2bnd  21145  pntibndlem2  21152  pntlemb  21158  pntlemg  21159  pntlemh  21160  pntlemr  21163  pntlemj  21164  pntlemf  21166  pntlemo  21168  pnt  21175  ostth2lem3  21196  ostth2lem4  21197  ostth2  21198  ostth3  21199  logblt  24202
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ioc 10853  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-fac 11494  df-bc 11521  df-hash 11546  df-shft 11809  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-limsup 12192  df-clim 12209  df-rlim 12210  df-sum 12407  df-ef 12597  df-sin 12599  df-cos 12600  df-pi 12602  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-fbas 16623  df-fg 16624  df-cnfld 16627  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-ntr 17007  df-cls 17008  df-nei 17085  df-lp 17123  df-perf 17124  df-cn 17213  df-cnp 17214  df-haus 17301  df-tx 17515  df-hmeo 17708  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893  df-xms 18259  df-ms 18260  df-tms 18261  df-cncf 18779  df-limc 19620  df-dv 19621  df-log 20321
  Copyright terms: Public domain W3C validator