MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem2 Structured version   Unicode version

Theorem rplogsumlem2 21171
Description: Lemma for rplogsum 21213. Equation 9.2.14 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem2  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... A
) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  <_  2 )
Distinct variable group:    A, n

Proof of Theorem rplogsumlem2
Dummy variables  k  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flid 11208 . . . . 5  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
21oveq2d 6089 . . . 4  |-  ( A  e.  ZZ  ->  (
1 ... ( |_ `  A ) )  =  ( 1 ... A
) )
32sumeq1d 12487 . . 3  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  = 
sum_ n  e.  (
1 ... A ) ( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n ) )
4 fveq2 5720 . . . . . 6  |-  ( n  =  ( p ^
k )  ->  (Λ `  n )  =  (Λ `  ( p ^ k
) ) )
5 eleq1 2495 . . . . . . 7  |-  ( n  =  ( p ^
k )  ->  (
n  e.  Prime  <->  ( p ^ k )  e. 
Prime ) )
6 fveq2 5720 . . . . . . 7  |-  ( n  =  ( p ^
k )  ->  ( log `  n )  =  ( log `  (
p ^ k ) ) )
7 eqidd 2436 . . . . . . 7  |-  ( n  =  ( p ^
k )  ->  0  =  0 )
85, 6, 7ifbieq12d 3753 . . . . . 6  |-  ( n  =  ( p ^
k )  ->  if ( n  e.  Prime ,  ( log `  n
) ,  0 )  =  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )
94, 8oveq12d 6091 . . . . 5  |-  ( n  =  ( p ^
k )  ->  (
(Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  =  ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) ) )
10 id 20 . . . . 5  |-  ( n  =  ( p ^
k )  ->  n  =  ( p ^
k ) )
119, 10oveq12d 6091 . . . 4  |-  ( n  =  ( p ^
k )  ->  (
( (Λ `  n )  -  if ( n  e. 
Prime ,  ( log `  n ) ,  0 ) )  /  n
)  =  ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) ) )
12 zre 10278 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  RR )
13 elfznn 11072 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
1413adantl 453 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
15 vmacl 20893 . . . . . . . 8  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
1614, 15syl 16 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n )  e.  RR )
1714nnrpd 10639 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  RR+ )
1817relogcld 20510 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  n
)  e.  RR )
19 0re 9083 . . . . . . . 8  |-  0  e.  RR
20 ifcl 3767 . . . . . . . 8  |-  ( ( ( log `  n
)  e.  RR  /\  0  e.  RR )  ->  if ( n  e. 
Prime ,  ( log `  n ) ,  0 )  e.  RR )
2118, 19, 20sylancl 644 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  if ( n  e.  Prime ,  ( log `  n ) ,  0 )  e.  RR )
2216, 21resubcld 9457 . . . . . 6  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  e.  RR )
2322, 14nndivred 10040 . . . . 5  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  e.  RR )
2423recnd 9106 . . . 4  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  e.  CC )
25 simprr 734 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
(Λ `  n )  =  0 )
26 vmaprm 20892 . . . . . . . . . . . . 13  |-  ( n  e.  Prime  ->  (Λ `  n
)  =  ( log `  n ) )
27 prmnn 13074 . . . . . . . . . . . . . . 15  |-  ( n  e.  Prime  ->  n  e.  NN )
2827nnred 10007 . . . . . . . . . . . . . 14  |-  ( n  e.  Prime  ->  n  e.  RR )
29 prmuz2 13089 . . . . . . . . . . . . . . 15  |-  ( n  e.  Prime  ->  n  e.  ( ZZ>= `  2 )
)
30 eluz2b2 10540 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  2
)  <->  ( n  e.  NN  /\  1  < 
n ) )
3130simprbi 451 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  2
)  ->  1  <  n )
3229, 31syl 16 . . . . . . . . . . . . . 14  |-  ( n  e.  Prime  ->  1  < 
n )
3328, 32rplogcld 20516 . . . . . . . . . . . . 13  |-  ( n  e.  Prime  ->  ( log `  n )  e.  RR+ )
3426, 33eqeltrd 2509 . . . . . . . . . . . 12  |-  ( n  e.  Prime  ->  (Λ `  n
)  e.  RR+ )
3534rpne0d 10645 . . . . . . . . . . 11  |-  ( n  e.  Prime  ->  (Λ `  n
)  =/=  0 )
3635necon2bi 2644 . . . . . . . . . 10  |-  ( (Λ `  n )  =  0  ->  -.  n  e.  Prime )
3736ad2antll 710 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  -.  n  e.  Prime )
38 iffalse 3738 . . . . . . . . 9  |-  ( -.  n  e.  Prime  ->  if ( n  e.  Prime ,  ( log `  n
) ,  0 )  =  0 )
3937, 38syl 16 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  if ( n  e.  Prime ,  ( log `  n
) ,  0 )  =  0 )
4025, 39oveq12d 6091 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( (Λ `  n )  -  if ( n  e. 
Prime ,  ( log `  n ) ,  0 ) )  =  ( 0  -  0 ) )
41 0cn 9076 . . . . . . . 8  |-  0  e.  CC
4241subidi 9363 . . . . . . 7  |-  ( 0  -  0 )  =  0
4340, 42syl6eq 2483 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( (Λ `  n )  -  if ( n  e. 
Prime ,  ( log `  n ) ,  0 ) )  =  0 )
4443oveq1d 6088 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  =  ( 0  /  n
) )
4513ad2antrl 709 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  n  e.  NN )
4645nnrpd 10639 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  n  e.  RR+ )
4746rpcnne0d 10649 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( n  e.  CC  /\  n  =/=  0 ) )
48 div0 9698 . . . . . 6  |-  ( ( n  e.  CC  /\  n  =/=  0 )  -> 
( 0  /  n
)  =  0 )
4947, 48syl 16 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( 0  /  n
)  =  0 )
5044, 49eqtrd 2467 . . . 4  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  =  0 )
5111, 12, 24, 50fsumvma2 20990 . . 3  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) ) )
523, 51eqtr3d 2469 . 2  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... A
) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) ) )
53 fzfid 11304 . . . . 5  |-  ( A  e.  ZZ  ->  (
2 ... ( ( abs `  A )  +  1 ) )  e.  Fin )
54 inss2 3554 . . . . . . . . . . . 12  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
55 simpr 448 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
5654, 55sseldi 3338 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
57 prmnn 13074 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  NN )
5856, 57syl 16 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
5958nnred 10007 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR )
6012adantr 452 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR )
61 zcn 10279 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  A  e.  CC )
6261abscld 12230 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  ( abs `  A )  e.  RR )
63 peano2re 9231 . . . . . . . . . . 11  |-  ( ( abs `  A )  e.  RR  ->  (
( abs `  A
)  +  1 )  e.  RR )
6462, 63syl 16 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (
( abs `  A
)  +  1 )  e.  RR )
6564adantr 452 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( abs `  A
)  +  1 )  e.  RR )
66 inss1 3553 . . . . . . . . . . . . 13  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
6766sseli 3336 . . . . . . . . . . . 12  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  ->  p  e.  ( 0 [,] A
) )
68 elicc2 10967 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
6919, 12, 68sylancr 645 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  (
p  e.  ( 0 [,] A )  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  A
) ) )
7067, 69syl5ib 211 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  ->  (
p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
7170imp 419 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) )
7271simp3d 971 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  <_  A )
7361adantr 452 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  CC )
7473abscld 12230 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( abs `  A
)  e.  RR )
7560leabsd 12209 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  <_  ( abs `  A
) )
7674lep1d 9934 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( abs `  A
)  <_  ( ( abs `  A )  +  1 ) )
7760, 74, 65, 75, 76letrd 9219 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  <_  ( ( abs `  A )  +  1 ) )
7859, 60, 65, 72, 77letrd 9219 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  <_  ( ( abs `  A )  +  1 ) )
79 prmuz2 13089 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
8056, 79syl 16 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( ZZ>= ` 
2 ) )
81 nn0abscl 12109 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( abs `  A )  e. 
NN0 )
82 nn0p1nn 10251 . . . . . . . . . . . 12  |-  ( ( abs `  A )  e.  NN0  ->  ( ( abs `  A )  +  1 )  e.  NN )
8381, 82syl 16 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
( abs `  A
)  +  1 )  e.  NN )
8483nnzd 10366 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (
( abs `  A
)  +  1 )  e.  ZZ )
8584adantr 452 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( abs `  A
)  +  1 )  e.  ZZ )
86 elfz5 11043 . . . . . . . . 9  |-  ( ( p  e.  ( ZZ>= ` 
2 )  /\  (
( abs `  A
)  +  1 )  e.  ZZ )  -> 
( p  e.  ( 2 ... ( ( abs `  A )  +  1 ) )  <-> 
p  <_  ( ( abs `  A )  +  1 ) ) )
8780, 85, 86syl2anc 643 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  ( 2 ... ( ( abs `  A )  +  1 ) )  <-> 
p  <_  ( ( abs `  A )  +  1 ) ) )
8878, 87mpbird 224 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )
8988ex 424 . . . . . 6  |-  ( A  e.  ZZ  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  ->  p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ) )
9089ssrdv 3346 . . . . 5  |-  ( A  e.  ZZ  ->  (
( 0 [,] A
)  i^i  Prime )  C_  ( 2 ... (
( abs `  A
)  +  1 ) ) )
91 ssfi 7321 . . . . 5  |-  ( ( ( 2 ... (
( abs `  A
)  +  1 ) )  e.  Fin  /\  ( ( 0 [,] A )  i^i  Prime ) 
C_  ( 2 ... ( ( abs `  A
)  +  1 ) ) )  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
9253, 90, 91syl2anc 643 . . . 4  |-  ( A  e.  ZZ  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
93 fzfid 11304 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
94 simprl 733 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
9554, 94sseldi 3338 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  Prime )
96 elfznn 11072 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
9796ad2antll 710 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
k  e.  NN )
98 vmappw 20891 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  k  e.  NN )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
9995, 97, 98syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
(Λ `  ( p ^
k ) )  =  ( log `  p
) )
10058adantrr 698 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  NN )
101100nnrpd 10639 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  RR+ )
102101relogcld 20510 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( log `  p
)  e.  RR )
10399, 102eqeltrd 2509 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
(Λ `  ( p ^
k ) )  e.  RR )
10497nnnn0d 10266 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
k  e.  NN0 )
105 nnexpcl 11386 . . . . . . . . . . . 12  |-  ( ( p  e.  NN  /\  k  e.  NN0 )  -> 
( p ^ k
)  e.  NN )
106100, 104, 105syl2anc 643 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( p ^ k
)  e.  NN )
107106nnrpd 10639 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( p ^ k
)  e.  RR+ )
108107relogcld 20510 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( log `  (
p ^ k ) )  e.  RR )
109 ifcl 3767 . . . . . . . . 9  |-  ( ( ( log `  (
p ^ k ) )  e.  RR  /\  0  e.  RR )  ->  if ( ( p ^ k )  e. 
Prime ,  ( log `  ( p ^ k
) ) ,  0 )  e.  RR )
110108, 19, 109sylancl 644 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  e.  RR )
111103, 110resubcld 9457 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  e.  RR )
112111, 106nndivred 10040 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( ( (Λ `  (
p ^ k ) )  -  if ( ( p ^ k
)  e.  Prime ,  ( log `  ( p ^ k ) ) ,  0 ) )  /  ( p ^
k ) )  e.  RR )
113112anassrs 630 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  e.  RR )
11493, 113fsumrecl 12520 . . . 4  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  e.  RR )
11592, 114fsumrecl 12520 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  e.  RR )
11658nnrpd 10639 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR+ )
117116relogcld 20510 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
118 uz2m1nn 10542 . . . . . . 7  |-  ( p  e.  ( ZZ>= `  2
)  ->  ( p  -  1 )  e.  NN )
11980, 118syl 16 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  -  1 )  e.  NN )
12058, 119nnmulcld 10039 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  x.  (
p  -  1 ) )  e.  NN )
121117, 120nndivred 10040 . . . 4  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR )
12292, 121fsumrecl 12520 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR )
123 2re 10061 . . . 4  |-  2  e.  RR
124123a1i 11 . . 3  |-  ( A  e.  ZZ  ->  2  e.  RR )
12519a1i 11 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  e.  RR )
12658nngt0d 10035 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  p )
127125, 59, 60, 126, 72ltletrd 9222 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  A )
12860, 127elrpd 10638 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR+ )
129128relogcld 20510 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR )
130 eluz2b2 10540 . . . . . . . . . . . . . 14  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
131130simprbi 451 . . . . . . . . . . . . 13  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
13279, 131syl 16 . . . . . . . . . . . 12  |-  ( p  e.  Prime  ->  1  < 
p )
13356, 132syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  p )
13459, 133rplogcld 20516 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR+ )
135129, 134rerpdivcld 10667 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR )
136134rpcnd 10642 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  CC )
137136mulid2d 9098 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  x.  ( log `  p ) )  =  ( log `  p
) )
138116, 128logled 20514 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  <_  A  <->  ( log `  p )  <_  ( log `  A
) ) )
13972, 138mpbid 202 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  <_  ( log `  A ) )
140137, 139eqbrtrd 4224 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  x.  ( log `  p ) )  <_  ( log `  A
) )
141 1re 9082 . . . . . . . . . . . 12  |-  1  e.  RR
142141a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  e.  RR )
143142, 129, 134lemuldivd 10685 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  x.  ( log `  p
) )  <_  ( log `  A )  <->  1  <_  ( ( log `  A
)  /  ( log `  p ) ) ) )
144140, 143mpbid 202 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <_  ( ( log `  A )  / 
( log `  p
) ) )
145 flge1nn 11218 . . . . . . . . 9  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  1  <_ 
( ( log `  A
)  /  ( log `  p ) ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  NN )
146135, 144, 145syl2anc 643 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  NN )
147 nnuz 10513 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
148146, 147syl6eleq 2525 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  ( ZZ>= `  1
) )
149112recnd 9106 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( ( (Λ `  (
p ^ k ) )  -  if ( ( p ^ k
)  e.  Prime ,  ( log `  ( p ^ k ) ) ,  0 ) )  /  ( p ^
k ) )  e.  CC )
150149anassrs 630 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  e.  CC )
151 oveq2 6081 . . . . . . . . . 10  |-  ( k  =  1  ->  (
p ^ k )  =  ( p ^
1 ) )
152151fveq2d 5724 . . . . . . . . 9  |-  ( k  =  1  ->  (Λ `  ( p ^ k
) )  =  (Λ `  ( p ^ 1 ) ) )
153151eleq1d 2501 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( p ^ k
)  e.  Prime  <->  ( p ^ 1 )  e. 
Prime ) )
154151fveq2d 5724 . . . . . . . . . 10  |-  ( k  =  1  ->  ( log `  ( p ^
k ) )  =  ( log `  (
p ^ 1 ) ) )
155 eqidd 2436 . . . . . . . . . 10  |-  ( k  =  1  ->  0  =  0 )
156153, 154, 155ifbieq12d 3753 . . . . . . . . 9  |-  ( k  =  1  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  =  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )
157152, 156oveq12d 6091 . . . . . . . 8  |-  ( k  =  1  ->  (
(Λ `  ( p ^
k ) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  =  ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 ) ) )
158157, 151oveq12d 6091 . . . . . . 7  |-  ( k  =  1  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  =  ( ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  (
p ^ 1 ) ) )
159148, 150, 158fsum1p 12531 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  =  ( ( ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  (
p ^ 1 ) )  +  sum_ k  e.  ( ( 1  +  1 ) ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) ) ) )
16058nncnd 10008 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  CC )
161160exp1d 11510 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p ^ 1 )  =  p )
162161fveq2d 5724 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
(Λ `  ( p ^
1 ) )  =  (Λ `  p )
)
163 vmaprm 20892 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  (Λ `  p
)  =  ( log `  p ) )
16456, 163syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
(Λ `  p )  =  ( log `  p
) )
165162, 164eqtrd 2467 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
(Λ `  ( p ^
1 ) )  =  ( log `  p
) )
166161, 56eqeltrd 2509 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p ^ 1 )  e.  Prime )
167 iftrue 3737 . . . . . . . . . . . . 13  |-  ( ( p ^ 1 )  e.  Prime  ->  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 )  =  ( log `  (
p ^ 1 ) ) )
168166, 167syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 )  =  ( log `  (
p ^ 1 ) ) )
169161fveq2d 5724 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  (
p ^ 1 ) )  =  ( log `  p ) )
170168, 169eqtrd 2467 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 )  =  ( log `  p
) )
171165, 170oveq12d 6091 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  =  ( ( log `  p
)  -  ( log `  p ) ) )
172136subidd 9391 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  -  ( log `  p ) )  =  0 )
173171, 172eqtrd 2467 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  =  0 )
174173, 161oveq12d 6091 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( (Λ `  (
p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  ( p ^
1 ) )  =  ( 0  /  p
) )
175116rpcnne0d 10649 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  CC  /\  p  =/=  0 ) )
176 div0 9698 . . . . . . . . 9  |-  ( ( p  e.  CC  /\  p  =/=  0 )  -> 
( 0  /  p
)  =  0 )
177175, 176syl 16 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 0  /  p
)  =  0 )
178174, 177eqtrd 2467 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( (Λ `  (
p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  ( p ^
1 ) )  =  0 )
179 1p1e2 10086 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
180179oveq1i 6083 . . . . . . . . 9  |-  ( ( 1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  =  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )
181180a1i 11 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  +  1 ) ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
182 elfzuz 11047 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 2 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  ( ZZ>= `  2 )
)
183 eluz2b2 10540 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  2
)  <->  ( k  e.  NN  /\  1  < 
k ) )
184183simplbi 447 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  2
)  ->  k  e.  NN )
185182, 184syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  ( 2 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
186185, 180eleq2s 2527 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 1  +  1 ) ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
18756, 186, 98syl2an 464 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
18858adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  p  e.  NN )
189 nnq 10579 . . . . . . . . . . . . . 14  |-  ( p  e.  NN  ->  p  e.  QQ )
190188, 189syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  p  e.  QQ )
191182, 180eleq2s 2527 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 1  +  1 ) ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  ( ZZ>= `  2 )
)
192191adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  k  e.  ( ZZ>= `  2 )
)
193 expnprm 13263 . . . . . . . . . . . . 13  |-  ( ( p  e.  QQ  /\  k  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( p ^ k
)  e.  Prime )
194190, 192, 193syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  -.  ( p ^ k
)  e.  Prime )
195 iffalse 3738 . . . . . . . . . . . 12  |-  ( -.  ( p ^ k
)  e.  Prime  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  =  0 )
196194, 195syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  =  0 )
197187, 196oveq12d 6091 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
(Λ `  ( p ^
k ) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  =  ( ( log `  p )  -  0 ) )
198136subid1d 9392 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  -  0 )  =  ( log `  p
) )
199198adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( log `  p
)  -  0 )  =  ( log `  p
) )
200197, 199eqtrd 2467 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
(Λ `  ( p ^
k ) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  =  ( log `  p ) )
201200oveq1d 6088 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  =  ( ( log `  p )  /  ( p ^
k ) ) )
202181, 201sumeq12dv 12492 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( ( 1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  /  ( p ^
k ) ) )
203178, 202oveq12d 6091 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 ) )  /  ( p ^ 1 ) )  +  sum_ k  e.  ( ( 1  +  1 ) ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) ) )  =  ( 0  +  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  /  ( p ^
k ) ) ) )
204 fzfid 11304 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
205117adantr 452 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( log `  p
)  e.  RR )
206 nnnn0 10220 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  NN0 )
20758, 206, 105syl2an 464 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( p ^ k
)  e.  NN )
208205, 207nndivred 10040 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  /  ( p ^ k ) )  e.  RR )
209185, 208sylan2 461 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( log `  p
)  /  ( p ^ k ) )  e.  RR )
210204, 209fsumrecl 12520 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  e.  RR )
211210recnd 9106 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  e.  CC )
212211addid2d 9259 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 0  +  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) ) )  =  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) ) )
213159, 203, 2123eqtrd 2471 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  /  ( p ^
k ) ) )
214116rpreccld 10650 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  e.  RR+ )
215135flcld 11199 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  ZZ )
216215peano2zd 10370 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ZZ )
217214, 216rpexpcld 11538 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) )  e.  RR+ )
218217rpge0d 10644 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <_  ( (
1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )
21958nnrecred 10037 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  e.  RR )
220219resqcld 11541 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ 2 )  e.  RR )
221146peano2nnd 10009 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  NN )
222221nnnn0d 10266 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e. 
NN0 )
223219, 222reexpcld 11532 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) )  e.  RR )
224220, 223subge02d 9610 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 0  <_  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) )  <->  ( (
( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  <_  ( (
1  /  p ) ^ 2 ) ) )
225218, 224mpbid 202 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  <_  ( ( 1  /  p ) ^
2 ) )
226119nnrpd 10639 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  -  1 )  e.  RR+ )
227226rpcnne0d 10649 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  - 
1 )  e.  CC  /\  ( p  -  1 )  =/=  0 ) )
228214rpcnd 10642 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  e.  CC )
229 dmdcan 9716 . . . . . . . . . . 11  |-  ( ( ( ( p  - 
1 )  e.  CC  /\  ( p  -  1 )  =/=  0 )  /\  ( p  e.  CC  /\  p  =/=  0 )  /\  (
1  /  p )  e.  CC )  -> 
( ( ( p  -  1 )  /  p )  x.  (
( 1  /  p
)  /  ( p  -  1 ) ) )  =  ( ( 1  /  p )  /  p ) )
230227, 175, 228, 229syl3anc 1184 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( p  -  1 )  /  p )  x.  (
( 1  /  p
)  /  ( p  -  1 ) ) )  =  ( ( 1  /  p )  /  p ) )
231142recnd 9106 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  e.  CC )
232 divsubdir 9702 . . . . . . . . . . . . 13  |-  ( ( p  e.  CC  /\  1  e.  CC  /\  (
p  e.  CC  /\  p  =/=  0 ) )  ->  ( ( p  -  1 )  /  p )  =  ( ( p  /  p
)  -  ( 1  /  p ) ) )
233160, 231, 175, 232syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  - 
1 )  /  p
)  =  ( ( p  /  p )  -  ( 1  /  p ) ) )
234 divid 9697 . . . . . . . . . . . . . 14  |-  ( ( p  e.  CC  /\  p  =/=  0 )  -> 
( p  /  p
)  =  1 )
235175, 234syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  /  p
)  =  1 )
236235oveq1d 6088 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  /  p )  -  (
1  /  p ) )  =  ( 1  -  ( 1  /  p ) ) )
237233, 236eqtrd 2467 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  - 
1 )  /  p
)  =  ( 1  -  ( 1  /  p ) ) )
238 divdiv1 9717 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( p  e.  CC  /\  p  =/=  0 )  /\  ( ( p  -  1 )  e.  CC  /\  ( p  -  1 )  =/=  0 ) )  -> 
( ( 1  /  p )  /  (
p  -  1 ) )  =  ( 1  /  ( p  x.  ( p  -  1 ) ) ) )
239231, 175, 227, 238syl3anc 1184 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  /  (
p  -  1 ) )  =  ( 1  /  ( p  x.  ( p  -  1 ) ) ) )
240237, 239oveq12d 6091 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( p  -  1 )  /  p )  x.  (
( 1  /  p
)  /  ( p  -  1 ) ) )  =  ( ( 1  -  ( 1  /  p ) )  x.  ( 1  / 
( p  x.  (
p  -  1 ) ) ) ) )
24158nnne0d 10036 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  =/=  0 )
242228, 160, 241divrecd 9785 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  /  p
)  =  ( ( 1  /  p )  x.  ( 1  /  p ) ) )
243228sqvald 11512 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ 2 )  =  ( ( 1  /  p )  x.  ( 1  /  p ) ) )
244242, 243eqtr4d 2470 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  /  p
)  =  ( ( 1  /  p ) ^ 2 ) )
245230, 240, 2443eqtr3d 2475 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  -  ( 1  /  p
) )  x.  (
1  /  ( p  x.  ( p  - 
1 ) ) ) )  =  ( ( 1  /  p ) ^ 2 ) )
246225, 245breqtrrd 4230 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  <_  ( ( 1  -  ( 1  /  p ) )  x.  ( 1  /  (
p  x.  ( p  -  1 ) ) ) ) )
247220, 223resubcld 9457 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  e.  RR )
248120nnrecred 10037 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  (
p  x.  ( p  -  1 ) ) )  e.  RR )
249 resubcl 9357 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( 1  /  p
)  e.  RR )  ->  ( 1  -  ( 1  /  p
) )  e.  RR )
250141, 219, 249sylancr 645 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  -  (
1  /  p ) )  e.  RR )
251 recgt1 9898 . . . . . . . . . . . 12  |-  ( ( p  e.  RR  /\  0  <  p )  -> 
( 1  <  p  <->  ( 1  /  p )  <  1 ) )
25259, 126, 251syl2anc 643 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  <  p  <->  ( 1  /  p )  <  1 ) )
253133, 252mpbid 202 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  <  1 )
254 posdif 9513 . . . . . . . . . . 11  |-  ( ( ( 1  /  p
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  /  p )  <  1  <->  0  <  ( 1  -  ( 1  /  p
) ) ) )
255219, 141, 254sylancl 644 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  <  1  <->  0  <  ( 1  -  ( 1  /  p
) ) ) )
256253, 255mpbid 202 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  ( 1  -  ( 1  /  p ) ) )
257 ledivmul 9875 . . . . . . . . 9  |-  ( ( ( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  e.  RR  /\  (
1  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR  /\  (
( 1  -  (
1  /  p ) )  e.  RR  /\  0  <  ( 1  -  ( 1  /  p
) ) ) )  ->  ( ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )  /  (
1  -  ( 1  /  p ) ) )  <_  ( 1  /  ( p  x.  ( p  -  1 ) ) )  <->  ( (
( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  <_  ( (
1  -  ( 1  /  p ) )  x.  ( 1  / 
( p  x.  (
p  -  1 ) ) ) ) ) )
258247, 248, 250, 256, 257syl112anc 1188 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( ( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  <_  ( 1  / 
( p  x.  (
p  -  1 ) ) )  <->  ( (
( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  <_  ( (
1  -  ( 1  /  p ) )  x.  ( 1  / 
( p  x.  (
p  -  1 ) ) ) ) ) )
259246, 258mpbird 224 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  <_  ( 1  / 
( p  x.  (
p  -  1 ) ) ) )
260250, 256elrpd 10638 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  -  (
1  /  p ) )  e.  RR+ )
261247, 260rerpdivcld 10667 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  e.  RR )
262261, 248, 134lemul2d 10680 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( ( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  <_  ( 1  / 
( p  x.  (
p  -  1 ) ) )  <->  ( ( log `  p )  x.  ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) ) )  <_  ( ( log `  p )  x.  ( 1  /  (
p  x.  ( p  -  1 ) ) ) ) ) )
263259, 262mpbid 202 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )  /  (
1  -  ( 1  /  p ) ) ) )  <_  (
( log `  p
)  x.  ( 1  /  ( p  x.  ( p  -  1 ) ) ) ) )
264136adantr 452 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( log `  p
)  e.  CC )
265207nncnd 10008 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( p ^ k
)  e.  CC )
266207nnne0d 10036 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( p ^ k
)  =/=  0 )
267264, 265, 266divrecd 9785 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  /  ( p ^ k ) )  =  ( ( log `  p )  x.  (
1  /  ( p ^ k ) ) ) )
268160adantr 452 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  p  e.  CC )
26958adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  p  e.  NN )
270269nnne0d 10036 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  p  =/=  0 )
271 nnz 10295 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  ZZ )
272271adantl 453 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  k  e.  ZZ )
273268, 270, 272exprecd 11523 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( 1  /  p ) ^ k
)  =  ( 1  /  ( p ^
k ) ) )
274273oveq2d 6089 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  x.  ( ( 1  /  p ) ^ k ) )  =  ( ( log `  p )  x.  (
1  /  ( p ^ k ) ) ) )
275267, 274eqtr4d 2470 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  /  ( p ^ k ) )  =  ( ( log `  p )  x.  (
( 1  /  p
) ^ k ) ) )
276185, 275sylan2 461 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( log `  p
)  /  ( p ^ k ) )  =  ( ( log `  p )  x.  (
( 1  /  p
) ^ k ) ) )
277276sumeq2dv 12489 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  x.  ( ( 1  /  p ) ^
k ) ) )
278185nnnn0d 10266 . . . . . . . . 9  |-  ( k  e.  ( 2 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN0 )
279 expcl 11391 . . . . . . . . 9  |-  ( ( ( 1  /  p
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1  /  p ) ^ k
)  e.  CC )
280228, 278, 279syl2an 464 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( 1  /  p
) ^ k )  e.  CC )
281204, 136, 280fsummulc2 12559 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  x.  ( ( 1  /  p ) ^
k ) ) )
282 fzval3 11172 . . . . . . . . . . 11  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e.  ZZ  ->  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  =  ( 2..^ ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )
283215, 282syl 16 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( 2..^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )
284283sumeq1d 12487 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^
k )  =  sum_ k  e.  ( 2..^ ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) ( ( 1  /  p ) ^ k
) )
285219, 253ltned 9201 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  =/=  1 )
286 2nn0 10230 . . . . . . . . . . 11  |-  2  e.  NN0
287286a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
2  e.  NN0 )
288 eluzp1p1 10503 . . . . . . . . . . . 12  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e.  ( ZZ>= `  1 )  ->  ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
289148, 288syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
290 df-2 10050 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
291290fveq2i 5723 . . . . . . . . . . 11  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
292289, 291syl6eleqr 2526 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ( ZZ>= `  2 )
)
293228, 285, 287, 292geoserg 12637 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2..^ ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) ( ( 1  /  p ) ^ k
)  =  ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )  /  (
1  -  ( 1  /  p ) ) ) )
294284, 293eqtrd 2467 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^
k )  =  ( ( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p
) ) ) )
295294oveq2d 6089 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^ k ) )  =  ( ( log `  p )  x.  (
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p
) ) ) ) )
296277, 281, 2953eqtr2d 2473 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  =  ( ( log `  p )  x.  ( ( ( ( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) ) ) )
297120nncnd 10008 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  x.  (
p  -  1 ) )  e.  CC )
298120nnne0d 10036 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  x.  (
p  -  1 ) )  =/=  0 )
299136, 297, 298divrecd 9785 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  =  ( ( log `  p )  x.  (
1  /  ( p  x.  ( p  - 
1 ) ) ) ) )
300263, 296, 2993brtr4d 4234 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  <_  ( ( log `  p )  / 
( p  x.  (
p  -  1 ) ) ) )
301213, 300eqbrtrd 4224 . . . 4  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  <_  ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) ) )
30292, 114, 121, 301fsumle 12570 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  <_  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) ) )
303 elfzuz 11047 . . . . . . . . . . 11  |-  ( p  e.  ( 2 ... ( ( abs `  A
)  +  1 ) )  ->  p  e.  ( ZZ>= `  2 )
)
304130simplbi 447 . . . . . . . . . . 11  |-  ( p  e.  ( ZZ>= `  2
)  ->  p  e.  NN )
305303, 304syl 16 . . . . . . . . . 10  |-  ( p  e.  ( 2 ... ( ( abs `  A
)  +  1 ) )  ->  p  e.  NN )
306305adantl 453 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  ->  p  e.  NN )
307306nnred 10007 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  ->  p  e.  RR )
308303adantl 453 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  ->  p  e.  ( ZZ>= ` 
2 ) )
309308, 131syl 16 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
1  <  p )
310307, 309rplogcld 20516 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( log `  p
)  e.  RR+ )
311308, 118syl 16 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( p  -  1 )  e.  NN )
312306, 311nnmulcld 10039 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( p  x.  (
p  -  1 ) )  e.  NN )
313312nnrpd 10639 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( p  x.  (
p  -  1 ) )  e.  RR+ )
314310, 313rpdivcld 10657 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR+ )
315314rpred 10640 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR )
31653, 315fsumrecl 12520 . . . 4  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) )  e.  RR )
317314rpge0d 10644 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
0  <_  ( ( log `  p )  / 
( p  x.  (
p  -  1 ) ) ) )
31853, 315, 317, 90fsumless 12567 . . . 4  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  <_  sum_ p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) ) )
319 rplogsumlem1 21170 . . . . 5  |-  ( ( ( abs `  A
)  +  1 )  e.  NN  ->  sum_ p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) )  <_  2 )
32083, 319syl 16 . . . 4  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) )  <_  2 )
321122, 316, 124, 318, 320letrd 9219 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  <_  2 )
322115, 122, 124, 302, 321letrd 9219 . 2  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  <_  2 )
32352, 322eqbrtrd 4224 1  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... A
) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  <_  2 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598    i^i cin 3311    C_ wss 3312   ifcif 3731   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Fincfn 7101   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   2c2 10041   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   QQcq 10566   RR+crp 10604   [,]cicc 10911   ...cfz 11035  ..^cfzo 11127   |_cfl 11193   ^cexp 11374   abscabs 12031   sum_csu 12471   Primecprime 13071   logclog 20444  Λcvma 20866
This theorem is referenced by:  rplogsum  21213
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ioc 10913  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-ef 12662  df-sin 12664  df-cos 12665  df-tan 12666  df-pi 12667  df-dvds 12845  df-gcd 12999  df-prm 13072  df-pc 13203  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-cmp 17442  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-limc 19745  df-dv 19746  df-log 20446  df-cxp 20447  df-vma 20872
  Copyright terms: Public domain W3C validator