MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpneg Unicode version

Theorem rpneg 10379
Description: Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of [Apostol] p. 20. (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
rpneg  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( A  e.  RR+  <->  -.  -u A  e.  RR+ )
)

Proof of Theorem rpneg
StepHypRef Expression
1 0re 8834 . . . . . . . 8  |-  0  e.  RR
2 ltle 8906 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
31, 2mpan 651 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  A  ->  0  <_  A ) )
43imp 418 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <_  A )
54olcd 382 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( -.  -u A  e.  RR  \/  0  <_  A ) )
6 renegcl 9106 . . . . . . . . 9  |-  ( A  e.  RR  ->  -u A  e.  RR )
76pm2.24d 135 . . . . . . . 8  |-  ( A  e.  RR  ->  ( -.  -u A  e.  RR  ->  0  <  A ) )
87adantr 451 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( -.  -u A  e.  RR  ->  0  <  A ) )
9 ltlen 8918 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  ( 0  <_  A  /\  A  =/=  0 ) ) )
101, 9mpan 651 . . . . . . . . . 10  |-  ( A  e.  RR  ->  (
0  <  A  <->  ( 0  <_  A  /\  A  =/=  0 ) ) )
1110biimprd 214 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( 0  <_  A  /\  A  =/=  0
)  ->  0  <  A ) )
1211exp3acom23 1362 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  =/=  0  ->  (
0  <_  A  ->  0  <  A ) ) )
1312imp 418 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( 0  <_  A  ->  0  <  A ) )
148, 13jaod 369 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( ( -.  -u A  e.  RR  \/  0  <_  A )  ->  0  <  A ) )
15 simpl 443 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =/=  0 )  ->  A  e.  RR )
1614, 15jctild 527 . . . . 5  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( ( -.  -u A  e.  RR  \/  0  <_  A )  ->  ( A  e.  RR  /\  0  <  A ) ) )
175, 16impbid2 195 . . . 4  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( ( A  e.  RR  /\  0  < 
A )  <->  ( -.  -u A  e.  RR  \/  0  <_  A ) ) )
18 lenlt 8897 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
191, 18mpan 651 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <_  A  <->  -.  A  <  0 ) )
20 lt0neg1 9276 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  <  0  <->  0  <  -u A ) )
2120notbid 285 . . . . . . 7  |-  ( A  e.  RR  ->  ( -.  A  <  0  <->  -.  0  <  -u A
) )
2219, 21bitrd 244 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <_  A  <->  -.  0  <  -u A ) )
2322adantr 451 . . . . 5  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( 0  <_  A  <->  -.  0  <  -u A
) )
2423orbi2d 682 . . . 4  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( ( -.  -u A  e.  RR  \/  0  <_  A )  <->  ( -.  -u A  e.  RR  \/  -.  0  <  -u A
) ) )
2517, 24bitrd 244 . . 3  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( ( A  e.  RR  /\  0  < 
A )  <->  ( -.  -u A  e.  RR  \/  -.  0  <  -u A
) ) )
26 ianor 474 . . 3  |-  ( -.  ( -u A  e.  RR  /\  0  <  -u A )  <->  ( -.  -u A  e.  RR  \/  -.  0  <  -u A
) )
2725, 26syl6bbr 254 . 2  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( ( A  e.  RR  /\  0  < 
A )  <->  -.  ( -u A  e.  RR  /\  0  <  -u A ) ) )
28 elrp 10352 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
29 elrp 10352 . . 3  |-  ( -u A  e.  RR+  <->  ( -u A  e.  RR  /\  0  <  -u A ) )
3029notbii 287 . 2  |-  ( -.  -u A  e.  RR+  <->  -.  ( -u A  e.  RR  /\  0  <  -u A ) )
3127, 28, 303bitr4g 279 1  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( A  e.  RR+  <->  -.  -u A  e.  RR+ )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    e. wcel 1685    =/= wne 2447   class class class wbr 4024   RRcr 8732   0cc0 8733    < clt 8863    <_ cle 8864   -ucneg 9034   RR+crp 10350
This theorem is referenced by:  cnpart  11721  angpined  20123
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-rp 10351
  Copyright terms: Public domain W3C validator