MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem1 Unicode version

Theorem rpnnen1lem1 10309
Description: Lemma for rpnnen1 10314. (Contributed by Mario Carneiro, 12-May-2013.)
Hypotheses
Ref Expression
rpnnen1.1  |-  T  =  { n  e.  ZZ  |  ( n  / 
k )  <  x }
rpnnen1.2  |-  F  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) )
Assertion
Ref Expression
rpnnen1lem1  |-  ( x  e.  RR  ->  ( F `  x )  e.  ( QQ  ^m  NN ) )
Distinct variable groups:    k, F, n, x    T, n
Allowed substitution hints:    T( x, k)

Proof of Theorem rpnnen1lem1
StepHypRef Expression
1 nnexALT 9716 . . . 4  |-  NN  e.  _V
21mptex 5680 . . 3  |-  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) )  e.  _V
3 rpnnen1.2 . . . 4  |-  F  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) )
43fvmpt2 5542 . . 3  |-  ( ( x  e.  RR  /\  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )  e. 
_V )  ->  ( F `  x )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k ) ) )
52, 4mpan2 655 . 2  |-  ( x  e.  RR  ->  ( F `  x )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k ) ) )
6 rpnnen1.1 . . . . . . 7  |-  T  =  { n  e.  ZZ  |  ( n  / 
k )  <  x }
7 ssrab2 3233 . . . . . . 7  |-  { n  e.  ZZ  |  ( n  /  k )  < 
x }  C_  ZZ
86, 7eqsstri 3183 . . . . . 6  |-  T  C_  ZZ
98a1i 12 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  T  C_  ZZ )
10 nnre 9721 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  RR )
11 ax-mulrcl 8768 . . . . . . . . . . . . 13  |-  ( ( k  e.  RR  /\  x  e.  RR )  ->  ( k  x.  x
)  e.  RR )
1211ancoms 441 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  k  e.  RR )  ->  ( k  x.  x
)  e.  RR )
1310, 12sylan2 462 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( k  x.  x
)  e.  RR )
14 btwnz 10081 . . . . . . . . . . . 12  |-  ( ( k  x.  x )  e.  RR  ->  ( E. n  e.  ZZ  n  <  ( k  x.  x )  /\  E. n  e.  ZZ  (
k  x.  x )  <  n ) )
1514simpld 447 . . . . . . . . . . 11  |-  ( ( k  x.  x )  e.  RR  ->  E. n  e.  ZZ  n  <  (
k  x.  x ) )
1613, 15syl 17 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. n  e.  ZZ  n  <  ( k  x.  x ) )
17 zre 9995 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  n  e.  RR )
1817adantl 454 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  n  e.  RR )
19 simpll 733 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  x  e.  RR )
20 nngt0 9743 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  0  <  k )
2110, 20jca 520 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  e.  RR  /\  0  <  k ) )
2221ad2antlr 710 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( k  e.  RR  /\  0  < 
k ) )
23 ltdivmul 9596 . . . . . . . . . . . 12  |-  ( ( n  e.  RR  /\  x  e.  RR  /\  (
k  e.  RR  /\  0  <  k ) )  ->  ( ( n  /  k )  < 
x  <->  n  <  ( k  x.  x ) ) )
2418, 19, 22, 23syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( ( n  /  k )  < 
x  <->  n  <  ( k  x.  x ) ) )
2524rexbidva 2535 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( E. n  e.  ZZ  ( n  / 
k )  <  x  <->  E. n  e.  ZZ  n  <  ( k  x.  x
) ) )
2616, 25mpbird 225 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. n  e.  ZZ  ( n  /  k
)  <  x )
27 rabn0 3449 . . . . . . . . 9  |-  ( { n  e.  ZZ  | 
( n  /  k
)  <  x }  =/=  (/)  <->  E. n  e.  ZZ  ( n  /  k
)  <  x )
2826, 27sylibr 205 . . . . . . . 8  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  { n  e.  ZZ  |  ( n  / 
k )  <  x }  =/=  (/) )
296neeq1i 2431 . . . . . . . 8  |-  ( T  =/=  (/)  <->  { n  e.  ZZ  |  ( n  / 
k )  <  x }  =/=  (/) )
3028, 29sylibr 205 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  T  =/=  (/) )
316rabeq2i 2760 . . . . . . . . . 10  |-  ( n  e.  T  <->  ( n  e.  ZZ  /\  ( n  /  k )  < 
x ) )
3210ad2antlr 710 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  k  e.  RR )
3332, 19, 11syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( k  x.  x )  e.  RR )
34 ltle 8878 . . . . . . . . . . . . 13  |-  ( ( n  e.  RR  /\  ( k  x.  x
)  e.  RR )  ->  ( n  < 
( k  x.  x
)  ->  n  <_  ( k  x.  x ) ) )
3518, 33, 34syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( n  < 
( k  x.  x
)  ->  n  <_  ( k  x.  x ) ) )
3624, 35sylbid 208 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( ( n  /  k )  < 
x  ->  n  <_  ( k  x.  x ) ) )
3736impr 605 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  ( n  e.  ZZ  /\  ( n  /  k )  < 
x ) )  ->  n  <_  ( k  x.  x ) )
3831, 37sylan2b 463 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  T
)  ->  n  <_  ( k  x.  x ) )
3938ralrimiva 2601 . . . . . . . 8  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  A. n  e.  T  n  <_  ( k  x.  x ) )
40 breq2 4001 . . . . . . . . . 10  |-  ( y  =  ( k  x.  x )  ->  (
n  <_  y  <->  n  <_  ( k  x.  x ) ) )
4140ralbidv 2538 . . . . . . . . 9  |-  ( y  =  ( k  x.  x )  ->  ( A. n  e.  T  n  <_  y  <->  A. n  e.  T  n  <_  ( k  x.  x ) ) )
4241rcla4ev 2859 . . . . . . . 8  |-  ( ( ( k  x.  x
)  e.  RR  /\  A. n  e.  T  n  <_  ( k  x.  x ) )  ->  E. y  e.  RR  A. n  e.  T  n  <_  y )
4313, 39, 42syl2anc 645 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. y  e.  RR  A. n  e.  T  n  <_  y )
44 suprzcl 10058 . . . . . . 7  |-  ( ( T  C_  ZZ  /\  T  =/=  (/)  /\  E. y  e.  RR  A. n  e.  T  n  <_  y
)  ->  sup ( T ,  RR ,  <  )  e.  T )
459, 30, 43, 44syl3anc 1187 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  T )
468, 45sseldi 3153 . . . . 5  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  ZZ )
47 znq 10287 . . . . 5  |-  ( ( sup ( T ,  RR ,  <  )  e.  ZZ  /\  k  e.  NN )  ->  ( sup ( T ,  RR ,  <  )  /  k
)  e.  QQ )
4846, 47sylancom 651 . . . 4  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( sup ( T ,  RR ,  <  )  /  k )  e.  QQ )
49 eqid 2258 . . . 4  |-  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )
5048, 49fmptd 5618 . . 3  |-  ( x  e.  RR  ->  (
k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) : NN --> QQ )
51 qexALT 10298 . . . 4  |-  QQ  e.  _V
5251, 1elmap 6764 . . 3  |-  ( ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )  e.  ( QQ  ^m  NN ) 
<->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) : NN --> QQ )
5350, 52sylibr 205 . 2  |-  ( x  e.  RR  ->  (
k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )  e.  ( QQ  ^m  NN ) )
545, 53eqeltrd 2332 1  |-  ( x  e.  RR  ->  ( F `  x )  e.  ( QQ  ^m  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519   {crab 2522   _Vcvv 2763    C_ wss 3127   (/)c0 3430   class class class wbr 3997    e. cmpt 4051   -->wf 4669   ` cfv 4673  (class class class)co 5792    ^m cmap 6740   supcsup 7161   RRcr 8704   0cc0 8705    x. cmul 8710    < clt 8835    <_ cle 8836    / cdiv 9391   NNcn 9714   ZZcz 9991   QQcq 10283
This theorem is referenced by:  rpnnen1lem3  10311  rpnnen1lem4  10312  rpnnen1lem5  10313  rpnnen1  10314
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-n0 9933  df-z 9992  df-q 10284
  Copyright terms: Public domain W3C validator