MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem1 Unicode version

Theorem rpnnen2lem1 12495
Description: Lemma for rpnnen2 12506. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
Assertion
Ref Expression
rpnnen2lem1  |-  ( ( A  C_  NN  /\  N  e.  NN )  ->  (
( F `  A
) `  N )  =  if ( N  e.  A ,  ( ( 1  /  3 ) ^ N ) ,  0 ) )
Distinct variable groups:    x, n, A    n, N
Allowed substitution hints:    F( x, n)    N( x)

Proof of Theorem rpnnen2lem1
StepHypRef Expression
1 nnex 9754 . . . . 5  |-  NN  e.  _V
21elpw2 4177 . . . 4  |-  ( A  e.  ~P NN  <->  A  C_  NN )
3 eleq2 2346 . . . . . . 7  |-  ( x  =  A  ->  (
n  e.  x  <->  n  e.  A ) )
43ifbid 3585 . . . . . 6  |-  ( x  =  A  ->  if ( n  e.  x ,  ( ( 1  /  3 ) ^
n ) ,  0 )  =  if ( n  e.  A , 
( ( 1  / 
3 ) ^ n
) ,  0 ) )
54mpteq2dv 4109 . . . . 5  |-  ( x  =  A  ->  (
n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3 ) ^
n ) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3 ) ^
n ) ,  0 ) ) )
6 rpnnen2.1 . . . . 5  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
71mptex 5748 . . . . 5  |-  ( n  e.  NN  |->  if ( n  e.  A , 
( ( 1  / 
3 ) ^ n
) ,  0 ) )  e.  _V
85, 6, 7fvmpt 5604 . . . 4  |-  ( A  e.  ~P NN  ->  ( F `  A )  =  ( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
92, 8sylbir 204 . . 3  |-  ( A 
C_  NN  ->  ( F `
 A )  =  ( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3 ) ^
n ) ,  0 ) ) )
109fveq1d 5529 . 2  |-  ( A 
C_  NN  ->  ( ( F `  A ) `
 N )  =  ( ( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) `
 N ) )
11 eleq1 2345 . . . 4  |-  ( n  =  N  ->  (
n  e.  A  <->  N  e.  A ) )
12 oveq2 5868 . . . 4  |-  ( n  =  N  ->  (
( 1  /  3
) ^ n )  =  ( ( 1  /  3 ) ^ N ) )
13 eqidd 2286 . . . 4  |-  ( n  =  N  ->  0  =  0 )
1411, 12, 13ifbieq12d 3589 . . 3  |-  ( n  =  N  ->  if ( n  e.  A ,  ( ( 1  /  3 ) ^
n ) ,  0 )  =  if ( N  e.  A , 
( ( 1  / 
3 ) ^ N
) ,  0 ) )
15 eqid 2285 . . 3  |-  ( n  e.  NN  |->  if ( n  e.  A , 
( ( 1  / 
3 ) ^ n
) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  e.  A , 
( ( 1  / 
3 ) ^ n
) ,  0 ) )
16 ovex 5885 . . . 4  |-  ( ( 1  /  3 ) ^ N )  e. 
_V
17 c0ex 8834 . . . 4  |-  0  e.  _V
1816, 17ifex 3625 . . 3  |-  if ( N  e.  A , 
( ( 1  / 
3 ) ^ N
) ,  0 )  e.  _V
1914, 15, 18fvmpt 5604 . 2  |-  ( N  e.  NN  ->  (
( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3 ) ^
n ) ,  0 ) ) `  N
)  =  if ( N  e.  A , 
( ( 1  / 
3 ) ^ N
) ,  0 ) )
2010, 19sylan9eq 2337 1  |-  ( ( A  C_  NN  /\  N  e.  NN )  ->  (
( F `  A
) `  N )  =  if ( N  e.  A ,  ( ( 1  /  3 ) ^ N ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686    C_ wss 3154   ifcif 3567   ~Pcpw 3627    e. cmpt 4079   ` cfv 5257  (class class class)co 5860   0cc0 8739   1c1 8740    / cdiv 9425   NNcn 9748   3c3 9798   ^cexp 11106
This theorem is referenced by:  rpnnen2lem3  12497  rpnnen2lem4  12498  rpnnen2lem9  12503  rpnnen2lem10  12504  rpnnen2lem11  12505
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-i2m1 8807  ax-1ne0 8808  ax-rrecex 8811  ax-cnre 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-recs 6390  df-rdg 6425  df-nn 9749
  Copyright terms: Public domain W3C validator