MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasum Unicode version

Theorem rpvmasum 20637
Description: The sum of the von Mangoldt function over those integers  n  ==  A (mod  N) is asymptotic to  log x  /  phi ( x )  +  O ( 1 ). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.u  |-  U  =  (Unit `  Z )
rpvmasum.b  |-  ( ph  ->  A  e.  U )
rpvmasum.t  |-  T  =  ( `' L " { A } )
Assertion
Ref Expression
rpvmasum  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  n )  /  n
) )  -  ( log `  x ) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, n, A    n, N, x    ph, n, x    T, n, x    U, n, x    n, Z, x   
n, L, x    A, n

Proof of Theorem rpvmasum
StepHypRef Expression
1 rpvmasum.z . . . . . . . . . . . . . 14  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . . . . . . . . . . . . 14  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  NN )
43adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  { y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )  ->  N  e.  NN )
5 eqid 2258 . . . . . . . . . . . . . 14  |-  (DChr `  N )  =  (DChr `  N )
6 eqid 2258 . . . . . . . . . . . . . 14  |-  ( Base `  (DChr `  N )
)  =  ( Base `  (DChr `  N )
)
7 eqid 2258 . . . . . . . . . . . . . 14  |-  ( 0g
`  (DChr `  N
) )  =  ( 0g `  (DChr `  N ) )
8 fveq2 5458 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  n  ->  ( L `  m )  =  ( L `  n ) )
98fveq2d 5462 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  n  ->  (
y `  ( L `  m ) )  =  ( y `  ( L `  n )
) )
10 id 21 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  n  ->  m  =  n )
119, 10oveq12d 5810 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  n  ->  (
( y `  ( L `  m )
)  /  m )  =  ( ( y `
 ( L `  n ) )  /  n ) )
1211cbvsumv 12134 . . . . . . . . . . . . . . . . 17  |-  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  sum_ n  e.  NN  ( ( y `  ( L `
 n ) )  /  n )
1312eqeq1i 2265 . . . . . . . . . . . . . . . 16  |-  ( sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0  <->  sum_ n  e.  NN  ( ( y `  ( L `  n ) )  /  n )  =  0 )
1413a1i 12 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ( Base `  (DChr `  N )
)  \  { ( 0g `  (DChr `  N
) ) } )  ->  ( sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0  <->  sum_ n  e.  NN  (
( y `  ( L `  n )
)  /  n )  =  0 ) )
1514rabbiia 2753 . . . . . . . . . . . . . 14  |-  { y  e.  ( ( Base `  (DChr `  N )
)  \  { ( 0g `  (DChr `  N
) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  =  { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ n  e.  NN  ( ( y `  ( L `
 n ) )  /  n )  =  0 }
16 simpr 449 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  { y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )  ->  f  e.  { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 } )
171, 2, 4, 5, 6, 7, 15, 16dchrisum0 20631 . . . . . . . . . . . . 13  |-  -.  ( ph  /\  f  e.  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )
1817imnani 414 . . . . . . . . . . . 12  |-  ( ph  ->  -.  f  e.  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )
1918eq0rdv 3464 . . . . . . . . . . 11  |-  ( ph  ->  { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 }  =  (/) )
2019fveq2d 5462 . . . . . . . . . 10  |-  ( ph  ->  ( # `  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )  =  (
# `  (/) ) )
21 hash0 11321 . . . . . . . . . 10  |-  ( # `  (/) )  =  0
2220, 21syl6eq 2306 . . . . . . . . 9  |-  ( ph  ->  ( # `  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )  =  0 )
2322oveq2d 5808 . . . . . . . 8  |-  ( ph  ->  ( 1  -  ( # `
 { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 } ) )  =  ( 1  -  0 ) )
24 ax-1cn 8763 . . . . . . . . 9  |-  1  e.  CC
2524subid1i 9086 . . . . . . . 8  |-  ( 1  -  0 )  =  1
2623, 25syl6eq 2306 . . . . . . 7  |-  ( ph  ->  ( 1  -  ( # `
 { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 } ) )  =  1 )
2726adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  -  ( # `  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } ) )  =  1 )
2827oveq2d 5808 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  x.  ( 1  -  ( # `
 { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 } ) ) )  =  ( ( log `  x )  x.  1 ) )
29 relogcl 19894 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
3029adantl 454 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
3130recnd 8829 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
3231mulid1d 8820 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  x.  1 )  =  ( log `  x ) )
3328, 32eqtrd 2290 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  x.  ( 1  -  ( # `
 { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 } ) ) )  =  ( log `  x ) )
3433oveq2d 5808 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } ) ) ) )  =  ( ( ( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( (Λ `  n
)  /  n ) )  -  ( log `  x ) ) )
3534mpteq2dva 4080 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  n )  /  n
) )  -  (
( log `  x
)  x.  ( 1  -  ( # `  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } ) ) ) ) )  =  ( x  e.  RR+  |->  ( ( ( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( (Λ `  n
)  /  n ) )  -  ( log `  x ) ) ) )
36 eqid 2258 . . 3  |-  { y  e.  ( ( Base `  (DChr `  N )
)  \  { ( 0g `  (DChr `  N
) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  =  { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 }
37 rpvmasum.u . . 3  |-  U  =  (Unit `  Z )
38 rpvmasum.b . . 3  |-  ( ph  ->  A  e.  U )
39 rpvmasum.t . . 3  |-  T  =  ( `' L " { A } )
4017pm2.21i 125 . . 3  |-  ( (
ph  /\  f  e.  { y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )  ->  A  =  ( 1r `  Z ) )
411, 2, 3, 5, 6, 7, 36, 37, 38, 39, 40rpvmasum2 20623 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  n )  /  n
) )  -  (
( log `  x
)  x.  ( 1  -  ( # `  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } ) ) ) ) )  e.  O
( 1 ) )
4235, 41eqeltrrd 2333 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  n )  /  n
) )  -  ( log `  x ) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   {crab 2522    \ cdif 3124    i^i cin 3126   (/)c0 3430   {csn 3614    e. cmpt 4051   `'ccnv 4660   "cima 4664   ` cfv 4673  (class class class)co 5792   RRcr 8704   0cc0 8705   1c1 8706    x. cmul 8710    - cmin 9005    / cdiv 9391   NNcn 9714   RR+crp 10321   ...cfz 10748   |_cfl 10890   #chash 11303   O ( 1 )co1 11925   sum_csu 12123   phicphi 12794   Basecbs 13110   0gc0g 13362   1rcur 15301  Unitcui 15383   ZRHomczrh 16413  ℤ/nczn 16416   logclog 19874  Λcvma 20291  DChrcdchr 20433
This theorem is referenced by:  rplogsum  20638
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-disj 3968  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-tpos 6168  df-rpss 6211  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-omul 6452  df-er 6628  df-ec 6630  df-qs 6634  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-acn 7543  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9933  df-z 9992  df-dec 10092  df-uz 10198  df-q 10284  df-rp 10322  df-xneg 10419  df-xadd 10420  df-xmul 10421  df-ioo 10626  df-ioc 10627  df-ico 10628  df-icc 10629  df-fz 10749  df-fzo 10837  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-fac 11255  df-bc 11282  df-hash 11304  df-word 11374  df-concat 11375  df-s1 11376  df-shft 11527  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-limsup 11910  df-clim 11927  df-rlim 11928  df-o1 11929  df-lo1 11930  df-sum 12124  df-ef 12311  df-e 12312  df-sin 12313  df-cos 12314  df-pi 12316  df-divides 12494  df-gcd 12648  df-prime 12721  df-numer 12768  df-denom 12769  df-phi 12796  df-pc 12852  df-struct 13112  df-ndx 13113  df-slot 13114  df-base 13115  df-sets 13116  df-ress 13117  df-plusg 13183  df-mulr 13184  df-starv 13185  df-sca 13186  df-vsca 13187  df-tset 13189  df-ple 13190  df-ds 13192  df-hom 13194  df-cco 13195  df-rest 13289  df-topn 13290  df-topgen 13306  df-pt 13307  df-prds 13310  df-xrs 13365  df-0g 13366  df-gsum 13367  df-qtop 13372  df-imas 13373  df-divs 13374  df-xps 13375  df-mre 13450  df-mrc 13451  df-acs 13453  df-mnd 14329  df-mhm 14377  df-submnd 14378  df-grp 14451  df-minusg 14452  df-sbg 14453  df-mulg 14454  df-subg 14580  df-nsg 14581  df-eqg 14582  df-ghm 14643  df-gim 14685  df-ga 14706  df-cntz 14755  df-oppg 14781  df-od 14806  df-gex 14807  df-pgp 14808  df-lsm 14909  df-pj1 14910  df-cmn 15053  df-abl 15054  df-cyg 15127  df-dprd 15195  df-dpj 15196  df-mgp 15288  df-ring 15302  df-cring 15303  df-ur 15304  df-oppr 15367  df-dvdsr 15385  df-unit 15386  df-invr 15416  df-dvr 15427  df-rnghom 15458  df-drng 15476  df-subrg 15505  df-lmod 15591  df-lss 15652  df-lsp 15691  df-sra 15887  df-rgmod 15888  df-lidl 15889  df-rsp 15890  df-2idl 15946  df-xmet 16335  df-met 16336  df-bl 16337  df-mopn 16338  df-cnfld 16340  df-zrh 16417  df-zn 16420  df-top 16598  df-bases 16600  df-topon 16601  df-topsp 16602  df-cld 16718  df-ntr 16719  df-cls 16720  df-nei 16797  df-lp 16830  df-perf 16831  df-cn 16919  df-cnp 16920  df-haus 17005  df-cmp 17076  df-tx 17219  df-hmeo 17408  df-fbas 17482  df-fg 17483  df-fil 17503  df-fm 17595  df-flim 17596  df-flf 17597  df-xms 17847  df-ms 17848  df-tms 17849  df-cncf 18344  df-0p 18987  df-limc 19178  df-dv 19179  df-ply 19532  df-idp 19533  df-coe 19534  df-dgr 19535  df-quot 19633  df-log 19876  df-cxp 19877  df-em 20249  df-cht 20296  df-vma 20297  df-chp 20298  df-ppi 20299  df-mu 20300  df-dchr 20434
  Copyright terms: Public domain W3C validator