MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasum Unicode version

Theorem rpvmasum 20675
Description: The sum of the von Mangoldt function over those integers  n  ==  A (mod  N) is asymptotic to  log x  /  phi ( x )  +  O ( 1 ). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.u  |-  U  =  (Unit `  Z )
rpvmasum.b  |-  ( ph  ->  A  e.  U )
rpvmasum.t  |-  T  =  ( `' L " { A } )
Assertion
Ref Expression
rpvmasum  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  n )  /  n
) )  -  ( log `  x ) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, n, A    n, N, x    ph, n, x    T, n, x    U, n, x    n, Z, x   
n, L, x    A, n

Proof of Theorem rpvmasum
Dummy variables  m  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . . . . . . . . . . . . 14  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . . . . . . . . . . . . 14  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  NN )
43adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  { y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )  ->  N  e.  NN )
5 eqid 2283 . . . . . . . . . . . . . 14  |-  (DChr `  N )  =  (DChr `  N )
6 eqid 2283 . . . . . . . . . . . . . 14  |-  ( Base `  (DChr `  N )
)  =  ( Base `  (DChr `  N )
)
7 eqid 2283 . . . . . . . . . . . . . 14  |-  ( 0g
`  (DChr `  N
) )  =  ( 0g `  (DChr `  N ) )
8 fveq2 5525 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  n  ->  ( L `  m )  =  ( L `  n ) )
98fveq2d 5529 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  n  ->  (
y `  ( L `  m ) )  =  ( y `  ( L `  n )
) )
10 id 19 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  n  ->  m  =  n )
119, 10oveq12d 5876 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  n  ->  (
( y `  ( L `  m )
)  /  m )  =  ( ( y `
 ( L `  n ) )  /  n ) )
1211cbvsumv 12169 . . . . . . . . . . . . . . . . 17  |-  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  sum_ n  e.  NN  ( ( y `  ( L `
 n ) )  /  n )
1312eqeq1i 2290 . . . . . . . . . . . . . . . 16  |-  ( sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0  <->  sum_ n  e.  NN  ( ( y `  ( L `  n ) )  /  n )  =  0 )
1413a1i 10 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ( Base `  (DChr `  N )
)  \  { ( 0g `  (DChr `  N
) ) } )  ->  ( sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0  <->  sum_ n  e.  NN  (
( y `  ( L `  n )
)  /  n )  =  0 ) )
1514rabbiia 2778 . . . . . . . . . . . . . 14  |-  { y  e.  ( ( Base `  (DChr `  N )
)  \  { ( 0g `  (DChr `  N
) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  =  { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ n  e.  NN  ( ( y `  ( L `
 n ) )  /  n )  =  0 }
16 simpr 447 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  { y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )  ->  f  e.  { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 } )
171, 2, 4, 5, 6, 7, 15, 16dchrisum0 20669 . . . . . . . . . . . . 13  |-  -.  ( ph  /\  f  e.  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )
1817imnani 412 . . . . . . . . . . . 12  |-  ( ph  ->  -.  f  e.  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )
1918eq0rdv 3489 . . . . . . . . . . 11  |-  ( ph  ->  { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 }  =  (/) )
2019fveq2d 5529 . . . . . . . . . 10  |-  ( ph  ->  ( # `  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )  =  (
# `  (/) ) )
21 hash0 11355 . . . . . . . . . 10  |-  ( # `  (/) )  =  0
2220, 21syl6eq 2331 . . . . . . . . 9  |-  ( ph  ->  ( # `  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )  =  0 )
2322oveq2d 5874 . . . . . . . 8  |-  ( ph  ->  ( 1  -  ( # `
 { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 } ) )  =  ( 1  -  0 ) )
24 ax-1cn 8795 . . . . . . . . 9  |-  1  e.  CC
2524subid1i 9118 . . . . . . . 8  |-  ( 1  -  0 )  =  1
2623, 25syl6eq 2331 . . . . . . 7  |-  ( ph  ->  ( 1  -  ( # `
 { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 } ) )  =  1 )
2726adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  -  ( # `  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } ) )  =  1 )
2827oveq2d 5874 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  x.  ( 1  -  ( # `
 { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 } ) ) )  =  ( ( log `  x )  x.  1 ) )
29 relogcl 19932 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
3029adantl 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
3130recnd 8861 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
3231mulid1d 8852 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  x.  1 )  =  ( log `  x ) )
3328, 32eqtrd 2315 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  x.  ( 1  -  ( # `
 { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 } ) ) )  =  ( log `  x ) )
3433oveq2d 5874 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } ) ) ) )  =  ( ( ( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( (Λ `  n
)  /  n ) )  -  ( log `  x ) ) )
3534mpteq2dva 4106 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  n )  /  n
) )  -  (
( log `  x
)  x.  ( 1  -  ( # `  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } ) ) ) ) )  =  ( x  e.  RR+  |->  ( ( ( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  T
) ( (Λ `  n
)  /  n ) )  -  ( log `  x ) ) ) )
36 eqid 2283 . . 3  |-  { y  e.  ( ( Base `  (DChr `  N )
)  \  { ( 0g `  (DChr `  N
) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  =  { y  e.  ( ( Base `  (DChr `  N ) )  \  { ( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `  ( L `
 m ) )  /  m )  =  0 }
37 rpvmasum.u . . 3  |-  U  =  (Unit `  Z )
38 rpvmasum.b . . 3  |-  ( ph  ->  A  e.  U )
39 rpvmasum.t . . 3  |-  T  =  ( `' L " { A } )
4017pm2.21i 123 . . 3  |-  ( (
ph  /\  f  e.  { y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } )  ->  A  =  ( 1r `  Z ) )
411, 2, 3, 5, 6, 7, 36, 37, 38, 39, 40rpvmasum2 20661 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  n )  /  n
) )  -  (
( log `  x
)  x.  ( 1  -  ( # `  {
y  e.  ( (
Base `  (DChr `  N
) )  \  {
( 0g `  (DChr `  N ) ) } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 } ) ) ) ) )  e.  O
( 1 ) )
4235, 41eqeltrrd 2358 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i 
T ) ( (Λ `  n )  /  n
) )  -  ( log `  x ) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547    \ cdif 3149    i^i cin 3151   (/)c0 3455   {csn 3640    e. cmpt 4077   `'ccnv 4688   "cima 4692   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    - cmin 9037    / cdiv 9423   NNcn 9746   RR+crp 10354   ...cfz 10782   |_cfl 10924   #chash 11337   O ( 1 )co1 11960   sum_csu 12158   phicphi 12832   Basecbs 13148   0gc0g 13400   1rcur 15339  Unitcui 15421   ZRHomczrh 16451  ℤ/nczn 16454   logclog 19912  Λcvma 20329  DChrcdchr 20471
This theorem is referenced by:  rplogsum  20676
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-rpss 6277  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-word 11409  df-concat 11410  df-s1 11411  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-o1 11964  df-lo1 11965  df-sum 12159  df-ef 12349  df-e 12350  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-prm 12759  df-numer 12806  df-denom 12807  df-phi 12834  df-pc 12890  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-divs 13412  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-nsg 14619  df-eqg 14620  df-ghm 14681  df-gim 14723  df-ga 14744  df-cntz 14793  df-oppg 14819  df-od 14844  df-gex 14845  df-pgp 14846  df-lsm 14947  df-pj1 14948  df-cmn 15091  df-abl 15092  df-cyg 15165  df-dprd 15233  df-dpj 15234  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-rnghom 15496  df-drng 15514  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-sra 15925  df-rgmod 15926  df-lidl 15927  df-rsp 15928  df-2idl 15984  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-zrh 16455  df-zn 16458  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-0p 19025  df-limc 19216  df-dv 19217  df-ply 19570  df-idp 19571  df-coe 19572  df-dgr 19573  df-quot 19671  df-log 19914  df-cxp 19915  df-em 20287  df-cht 20334  df-vma 20335  df-chp 20336  df-ppi 20337  df-mu 20338  df-dchr 20472
  Copyright terms: Public domain W3C validator