Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrncmslem Structured version   Unicode version

Theorem rrncmslem 26543
Description: Lemma for rrncms 26544. (Contributed by Jeff Madsen, 6-Jun-2014.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1  |-  X  =  ( RR  ^m  I
)
rrndstprj1.1  |-  M  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
rrncms.3  |-  J  =  ( MetOpen `  ( Rn `  I ) )
rrncms.4  |-  ( ph  ->  I  e.  Fin )
rrncms.5  |-  ( ph  ->  F  e.  ( Cau `  ( Rn `  I
) ) )
rrncms.6  |-  ( ph  ->  F : NN --> X )
rrncms.7  |-  P  =  ( m  e.  I  |->  (  ~~>  `  ( t  e.  NN  |->  ( ( F `
 t ) `  m ) ) ) )
Assertion
Ref Expression
rrncmslem  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Distinct variable groups:    m, I    t, m, F
Allowed substitution hints:    ph( t, m)    P( t, m)    I( t)    J( t, m)    M( t, m)    X( t, m)

Proof of Theorem rrncmslem
Dummy variables  k  n  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmrel 17296 . 2  |-  Rel  ( ~~> t `  J )
2 fvex 5744 . . . . . . . 8  |-  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  m )
) )  e.  _V
3 rrncms.7 . . . . . . . 8  |-  P  =  ( m  e.  I  |->  (  ~~>  `  ( t  e.  NN  |->  ( ( F `
 t ) `  m ) ) ) )
42, 3fnmpti 5575 . . . . . . 7  |-  P  Fn  I
54a1i 11 . . . . . 6  |-  ( ph  ->  P  Fn  I )
6 nnuz 10523 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
7 1z 10313 . . . . . . . . 9  |-  1  e.  ZZ
87a1i 11 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  1  e.  ZZ )
9 fveq2 5730 . . . . . . . . . . . . . . . 16  |-  ( t  =  k  ->  ( F `  t )  =  ( F `  k ) )
109fveq1d 5732 . . . . . . . . . . . . . . 15  |-  ( t  =  k  ->  (
( F `  t
) `  n )  =  ( ( F `
 k ) `  n ) )
11 eqid 2438 . . . . . . . . . . . . . . 15  |-  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) )  =  ( t  e.  NN  |->  ( ( F `
 t ) `  n ) )
12 fvex 5744 . . . . . . . . . . . . . . 15  |-  ( ( F `  k ) `
 n )  e. 
_V
1310, 11, 12fvmpt 5808 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  =  ( ( F `  k ) `
 n ) )
1413adantl 454 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  =  ( ( F `  k ) `
 n ) )
15 rrncms.6 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F : NN --> X )
1615ffvelrnda 5872 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  X )
17 rrnval.1 . . . . . . . . . . . . . . . . 17  |-  X  =  ( RR  ^m  I
)
1816, 17syl6eleq 2528 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  ( RR  ^m  I
) )
19 elmapi 7040 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( RR  ^m  I )  ->  ( F `  k ) : I --> RR )
2018, 19syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k ) : I --> RR )
2120ffvelrnda 5872 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  I )  ->  (
( F `  k
) `  n )  e.  RR )
2221an32s 781 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( F `  k
) `  n )  e.  RR )
2314, 22eqeltrd 2512 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  e.  RR )
2423recnd 9116 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  e.  CC )
25 rrncms.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ( Cau `  ( Rn `  I
) ) )
26 rrncms.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  I  e.  Fin )
2717rrnmet 26540 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  Fin  ->  ( Rn `  I )  e.  ( Met `  X
) )
2826, 27syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Rn `  I
)  e.  ( Met `  X ) )
29 metxmet 18366 . . . . . . . . . . . . . . . 16  |-  ( ( Rn `  I )  e.  ( Met `  X
)  ->  ( Rn `  I )  e.  ( * Met `  X
) )
3028, 29syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Rn `  I
)  e.  ( * Met `  X ) )
317a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  ZZ )
32 eqidd 2439 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( F `  k
) )
33 eqidd 2439 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  =  ( F `  j
) )
346, 30, 31, 32, 33, 15iscauf 19235 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  e.  ( Cau `  ( Rn
`  I ) )  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x ) )
3525, 34mpbid 203 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x )
3635adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x )
3726ad3antrrr 712 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  I  e.  Fin )
38 simpllr 737 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  n  e.  I
)
3915ad3antrrr 712 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  F : NN --> X )
406uztrn2 10505 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
4140adantll 696 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  k  e.  NN )
4239, 41ffvelrnd 5873 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( F `  k )  e.  X
)
43 simplr 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  j  e.  NN )
4439, 43ffvelrnd 5873 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( F `  j )  e.  X
)
45 rrndstprj1.1 . . . . . . . . . . . . . . . . . . . . 21  |-  M  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
4617, 45rrndstprj1 26541 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( I  e.  Fin  /\  n  e.  I )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 j )  e.  X ) )  -> 
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <_  ( ( F `  k )
( Rn `  I
) ( F `  j ) ) )
4737, 38, 42, 44, 46syl22anc 1186 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  <_  (
( F `  k
) ( Rn `  I ) ( F `
 j ) ) )
4828ad3antrrr 712 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( Rn `  I )  e.  ( Met `  X ) )
49 metsym 18382 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  ( F `  k )  e.  X  /\  ( F `  j )  e.  X )  ->  (
( F `  k
) ( Rn `  I ) ( F `
 j ) )  =  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) ) )
5048, 42, 44, 49syl3anc 1185 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 k ) ( Rn `  I ) ( F `  j
) )  =  ( ( F `  j
) ( Rn `  I ) ( F `
 k ) ) )
5147, 50breqtrd 4238 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  <_  (
( F `  j
) ( Rn `  I ) ( F `
 k ) ) )
5251adantllr 701 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  <_  (
( F `  j
) ( Rn `  I ) ( F `
 k ) ) )
5345remet 18823 . . . . . . . . . . . . . . . . . . . . 21  |-  M  e.  ( Met `  RR )
5453a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  M  e.  ( Met `  RR ) )
55 simpll 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ph  /\  n  e.  I )
)
5655, 41, 22syl2anc 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 k ) `  n )  e.  RR )
5715ffvelrnda 5872 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  e.  X )
5857, 17syl6eleq 2528 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  e.  ( RR  ^m  I
) )
59 elmapi 7040 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  j )  e.  ( RR  ^m  I )  ->  ( F `  j ) : I --> RR )
6058, 59syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j ) : I --> RR )
6160ffvelrnda 5872 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  I )  ->  (
( F `  j
) `  n )  e.  RR )
6261an32s 781 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  ->  (
( F `  j
) `  n )  e.  RR )
6362adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 j ) `  n )  e.  RR )
64 metcl 18364 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ( Met `  RR )  /\  (
( F `  k
) `  n )  e.  RR  /\  ( ( F `  j ) `
 n )  e.  RR )  ->  (
( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  e.  RR )
6554, 56, 63, 64syl3anc 1185 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  e.  RR )
6665adantllr 701 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  e.  RR )
67 metcl 18364 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  k )  e.  X )  ->  (
( F `  j
) ( Rn `  I ) ( F `
 k ) )  e.  RR )
6848, 44, 42, 67syl3anc 1185 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) )  e.  RR )
6968adantllr 701 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) )  e.  RR )
70 rpre 10620 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR+  ->  x  e.  RR )
7170adantl 454 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  ->  x  e.  RR )
7271ad2antrr 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  x  e.  RR )
73 lelttr 9167 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  e.  RR  /\  ( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  e.  RR  /\  x  e.  RR )  ->  ( ( ( ( ( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  <_ 
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  /\  ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x )  ->  (
( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <  x ) )
7466, 69, 72, 73syl3anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( ( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <_  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) )  /\  (
( F `  j
) ( Rn `  I ) ( F `
 k ) )  <  x )  -> 
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x )
)
7552, 74mpand 658 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x  ->  ( (
( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  < 
x ) )
7675ralimdva 2786 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x  ->  A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <  x ) )
7776reximdva 2820 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x )
)
7877ralimdva 2786 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x )
)
7945remetdval 18822 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F `  k ) `  n
)  e.  RR  /\  ( ( F `  j ) `  n
)  e.  RR )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  =  ( abs `  ( ( ( F `  k
) `  n )  -  ( ( F `
 j ) `  n ) ) ) )
8056, 63, 79syl2anc 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  =  ( abs `  ( ( ( F `  k
) `  n )  -  ( ( F `
 j ) `  n ) ) ) )
8141, 13syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 k )  =  ( ( F `  k ) `  n
) )
82 fveq2 5730 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  j  ->  ( F `  t )  =  ( F `  j ) )
8382fveq1d 5732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  j  ->  (
( F `  t
) `  n )  =  ( ( F `
 j ) `  n ) )
84 fvex 5744 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  j ) `
 n )  e. 
_V
8583, 11, 84fvmpt 5808 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
)  =  ( ( F `  j ) `
 n ) )
8685ad2antlr 709 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 j )  =  ( ( F `  j ) `  n
) )
8781, 86oveq12d 6101 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( t  e.  NN  |->  ( ( F `  t
) `  n )
) `  k )  -  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 j ) )  =  ( ( ( F `  k ) `
 n )  -  ( ( F `  j ) `  n
) ) )
8887fveq2d 5734 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  =  ( abs `  (
( ( F `  k ) `  n
)  -  ( ( F `  j ) `
 n ) ) ) )
8980, 88eqtr4d 2473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  =  ( abs `  ( ( ( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  -  ( ( t  e.  NN  |->  ( ( F `  t
) `  n )
) `  j )
) ) )
9089breq1d 4224 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( ( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  < 
x  <->  ( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9190ralbidva 2723 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9291rexbidva 2724 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  < 
x  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 k )  -  ( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  j ) ) )  <  x ) )
9392ralbidv 2727 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9478, 93sylibd 207 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9536, 94mpd 15 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x )
96 nnex 10008 . . . . . . . . . . . . 13  |-  NN  e.  _V
9796mptex 5968 . . . . . . . . . . . 12  |-  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) )  e.  _V
9897a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  e.  _V )
996, 24, 95, 98caucvg 12474 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  e.  dom  ~~>  )
100 climdm 12350 . . . . . . . . . 10  |-  ( ( t  e.  NN  |->  ( ( F `  t
) `  n )
)  e.  dom  ~~>  <->  ( t  e.  NN  |->  ( ( F `
 t ) `  n ) )  ~~>  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  n )
) ) )
10199, 100sylib 190 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  ~~>  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  n )
) ) )
102 fveq2 5730 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
( F `  t
) `  m )  =  ( ( F `
 t ) `  n ) )
103102mpteq2dv 4298 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
t  e.  NN  |->  ( ( F `  t
) `  m )
)  =  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) )
104103fveq2d 5734 . . . . . . . . . . 11  |-  ( m  =  n  ->  (  ~~>  `  ( t  e.  NN  |->  ( ( F `  t ) `  m
) ) )  =  (  ~~>  `  ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) ) )
105 fvex 5744 . . . . . . . . . . 11  |-  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  n )
) )  e.  _V
106104, 3, 105fvmpt 5808 . . . . . . . . . 10  |-  ( n  e.  I  ->  ( P `  n )  =  (  ~~>  `  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) ) )
107106adantl 454 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  ( P `  n )  =  (  ~~>  `  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) ) )
108101, 107breqtrrd 4240 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  ~~>  ( P `  n ) )
1096, 8, 108, 23climrecl 12379 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  ( P `  n )  e.  RR )
110109ralrimiva 2791 . . . . . 6  |-  ( ph  ->  A. n  e.  I 
( P `  n
)  e.  RR )
111 ffnfv 5896 . . . . . 6  |-  ( P : I --> RR  <->  ( P  Fn  I  /\  A. n  e.  I  ( P `  n )  e.  RR ) )
1125, 110, 111sylanbrc 647 . . . . 5  |-  ( ph  ->  P : I --> RR )
113 reex 9083 . . . . . 6  |-  RR  e.  _V
114 elmapg 7033 . . . . . 6  |-  ( ( RR  e.  _V  /\  I  e.  Fin )  ->  ( P  e.  ( RR  ^m  I )  <-> 
P : I --> RR ) )
115113, 26, 114sylancr 646 . . . . 5  |-  ( ph  ->  ( P  e.  ( RR  ^m  I )  <-> 
P : I --> RR ) )
116112, 115mpbird 225 . . . 4  |-  ( ph  ->  P  e.  ( RR 
^m  I ) )
117116, 17syl6eleqr 2529 . . 3  |-  ( ph  ->  P  e.  X )
118 1nn 10013 . . . . . . 7  |-  1  e.  NN
11926ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  I  e.  Fin )
12016adantlr 697 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( F `  k
)  e.  X )
121117ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  P  e.  X )
12217rrnmval 26539 . . . . . . . . . . . 12  |-  ( ( I  e.  Fin  /\  ( F `  k )  e.  X  /\  P  e.  X )  ->  (
( F `  k
) ( Rn `  I ) P )  =  ( sqr `  sum_ y  e.  I  (
( ( ( F `
 k ) `  y )  -  ( P `  y )
) ^ 2 ) ) )
123119, 120, 121, 122syl3anc 1185 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  =  ( sqr `  sum_ y  e.  I 
( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 ) ) )
124 simplrr 739 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  I  =  (/) )
125124sumeq1d 12497 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  -> 
sum_ y  e.  I 
( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 )  =  sum_ y  e.  (/)  ( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 ) )
126 sum0 12517 . . . . . . . . . . . . 13  |-  sum_ y  e.  (/)  ( ( ( ( F `  k
) `  y )  -  ( P `  y ) ) ^
2 )  =  0
127125, 126syl6eq 2486 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  -> 
sum_ y  e.  I 
( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 )  =  0 )
128127fveq2d 5734 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  sum_ y  e.  I  (
( ( ( F `
 k ) `  y )  -  ( P `  y )
) ^ 2 ) )  =  ( sqr `  0 ) )
129123, 128eqtrd 2470 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  =  ( sqr `  0 ) )
130 sqr0 12049 . . . . . . . . . 10  |-  ( sqr `  0 )  =  0
131129, 130syl6eq 2486 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  =  0 )
132 simplrl 738 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  x  e.  RR+ )
133132rpgt0d 10653 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  0  <  x )
134131, 133eqbrtrd 4234 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  <  x )
135134ralrimiva 2791 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =  (/) ) )  ->  A. k  e.  NN  ( ( F `
 k ) ( Rn `  I ) P )  <  x
)
136 fveq2 5730 . . . . . . . . . 10  |-  ( j  =  1  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  1 )
)
137136, 6syl6eqr 2488 . . . . . . . . 9  |-  ( j  =  1  ->  ( ZZ>=
`  j )  =  NN )
138137raleqdv 2912 . . . . . . . 8  |-  ( j  =  1  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
) ( Rn `  I ) P )  <  x  <->  A. k  e.  NN  ( ( F `
 k ) ( Rn `  I ) P )  <  x
) )
139138rspcev 3054 . . . . . . 7  |-  ( ( 1  e.  NN  /\  A. k  e.  NN  (
( F `  k
) ( Rn `  I ) P )  <  x )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) ( Rn `  I
) P )  < 
x )
140118, 135, 139sylancr 646 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =  (/) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x )
141140expr 600 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( I  =  (/)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
1427a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  1  e.  ZZ )
143 simprl 734 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  x  e.  RR+ )
144 simprr 735 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  I  =/=  (/) )
14526adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  I  e.  Fin )
146 hashnncl 11647 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  Fin  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
147145, 146syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
148144, 147mpbird 225 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( # `
 I )  e.  NN )
149148nnrpd 10649 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( # `
 I )  e.  RR+ )
150149rpsqrcld 12216 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( sqr `  ( # `  I
) )  e.  RR+ )
151143, 150rpdivcld 10667 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  (
x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
152151adantr 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
15313adantl 454 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 k )  =  ( ( F `  k ) `  n
) )
154108adantlr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( t  e.  NN  |->  ( ( F `  t ) `  n
) )  ~~>  ( P `
 n ) )
1556, 142, 152, 153, 154climi2 12307 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) )
1566rexuz3 12154 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
1577, 156ax-mp 8 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
15822adantllr 701 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( F `
 k ) `  n )  e.  RR )
159109adantlr 697 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( P `  n
)  e.  RR )
160159adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( P `  n )  e.  RR )
16145remetdval 18822 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F `  k ) `  n
)  e.  RR  /\  ( P `  n )  e.  RR )  -> 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  =  ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) ) )
162158, 160, 161syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  =  ( abs `  ( ( ( F `  k
) `  n )  -  ( P `  n ) ) ) )
163162breq1d 4224 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
16440, 163sylan2 462 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
165164anassrs 631 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I
)  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F `  k ) `  n
) M ( P `
 n ) )  <  ( x  / 
( sqr `  ( # `
 I ) ) )  <->  ( abs `  (
( ( F `  k ) `  n
)  -  ( P `
 n ) ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
166165ralbidva 2723 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  <->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( ( ( F `  k
) `  n )  -  ( P `  n ) ) )  <  ( x  / 
( sqr `  ( # `
 I ) ) ) ) )
167166rexbidva 2724 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
168157, 167syl5bbr 252 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
169155, 168mpbird 225 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) ) )
170169ralrimiva 2791 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
1716rexuz3 12154 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
1727, 171ax-mp 8 . . . . . . . . 9  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
173 rexfiuz 12153 . . . . . . . . . 10  |-  ( I  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
174145, 173syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
175172, 174syl5bb 250 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
176170, 175mpbird 225 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
17726ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  I  e.  Fin )
178 simplrr 739 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  I  =/=  (/) )
179 eldifsn 3929 . . . . . . . . . . . . . 14  |-  ( I  e.  ( Fin  \  { (/)
} )  <->  ( I  e.  Fin  /\  I  =/=  (/) ) )
180177, 178, 179sylanbrc 647 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  I  e.  ( Fin  \  { (/) } ) )
18115adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  F : NN --> X )
182181ffvelrnda 5872 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( F `  k
)  e.  X )
183117ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  P  e.  X )
184151adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
18517, 45rrndstprj2 26542 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  ( F `
 k )  e.  X  /\  P  e.  X )  /\  (
( x  /  ( sqr `  ( # `  I
) ) )  e.  RR+  /\  A. n  e.  I  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )  ->  ( ( F `  k )
( Rn `  I
) P )  < 
( ( x  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) ) )
186185expr 600 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  ( F `
 k )  e.  X  /\  P  e.  X )  /\  (
x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )  ->  ( A. n  e.  I  (
( ( F `  k ) `  n
) M ( P `
 n ) )  <  ( x  / 
( sqr `  ( # `
 I ) ) )  ->  ( ( F `  k )
( Rn `  I
) P )  < 
( ( x  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) ) ) )
187180, 182, 183, 184, 186syl31anc 1188 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( A. n  e.  I  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  <  (
x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  ( ( x  /  ( sqr `  ( # `  I
) ) )  x.  ( sqr `  ( # `
 I ) ) ) ) )
188 simplrl 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  x  e.  RR+ )
189188rpcnd 10652 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  x  e.  CC )
190150adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  ( # `
 I ) )  e.  RR+ )
191190rpcnd 10652 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  ( # `
 I ) )  e.  CC )
192190rpne0d 10655 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  ( # `
 I ) )  =/=  0 )
193189, 191, 192divcan1d 9793 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( ( x  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) )  =  x )
194193breq2d 4226 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( ( ( F `
 k ) ( Rn `  I ) P )  <  (
( x  /  ( sqr `  ( # `  I
) ) )  x.  ( sqr `  ( # `
 I ) ) )  <->  ( ( F `
 k ) ( Rn `  I ) P )  <  x
) )
195187, 194sylibd 207 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( A. n  e.  I  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  <  (
x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
19640, 195sylan2 462 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
197196anassrs 631 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  j  e.  NN )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
198197ralimdva 2786 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  ->  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
199198reximdva 2820 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) ( Rn `  I
) P )  < 
x ) )
200176, 199mpd 15 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x )
201200expr 600 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( I  =/=  (/)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
202141, 201pm2.61dne 2683 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x )
203202ralrimiva 2791 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) ( Rn `  I
) P )  < 
x )
204 rrncms.3 . . . 4  |-  J  =  ( MetOpen `  ( Rn `  I ) )
205204, 30, 6, 31, 32, 15lmmbrf 19217 . . 3  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) ) )
206117, 203, 205mpbir2and 890 . 2  |-  ( ph  ->  F ( ~~> t `  J ) P )
207 releldm 5104 . 2  |-  ( ( Rel  ( ~~> t `  J )  /\  F
( ~~> t `  J
) P )  ->  F  e.  dom  ( ~~> t `  J ) )
2081, 206, 207sylancr 646 1  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   _Vcvv 2958    \ cdif 3319   (/)c0 3630   {csn 3816   class class class wbr 4214    e. cmpt 4268    X. cxp 4878   dom cdm 4880    |` cres 4882    o. ccom 4884   Rel wrel 4885    Fn wfn 5451   -->wf 5452   ` cfv 5456  (class class class)co 6083    ^m cmap 7020   Fincfn 7111   RRcr 8991   0cc0 8992   1c1 8993    x. cmul 8997    < clt 9122    <_ cle 9123    - cmin 9293    / cdiv 9679   NNcn 10002   2c2 10051   ZZcz 10284   ZZ>=cuz 10490   RR+crp 10614   ^cexp 11384   #chash 11620   sqrcsqr 12040   abscabs 12041    ~~> cli 12280   sum_csu 12481   * Metcxmt 16688   Metcme 16689   MetOpencmopn 16693   ~~> tclm 17292   Caucca 19208   Rncrrn 26536
This theorem is referenced by:  rrncms  26544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-oi 7481  df-card 7828  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-n0 10224  df-z 10285  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ico 10924  df-fz 11046  df-fzo 11138  df-fl 11204  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-sum 12482  df-topgen 13669  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-top 16965  df-bases 16967  df-topon 16968  df-lm 17295  df-cau 19211  df-rrn 26537
  Copyright terms: Public domain W3C validator