MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb4 Unicode version

Theorem sb4 2066
Description: One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb4  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )

Proof of Theorem sb4
StepHypRef Expression
1 sb1 1656 . 2  |-  ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph ) )
2 equs5 2009 . 2  |-  ( -. 
A. x  x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) )
31, 2syl5 28 1  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   A.wal 1545   E.wex 1546   [wsb 1653
This theorem is referenced by:  sb4b  2067  dfsb2  2068  hbsb2  2070  sbn  2075  sbi1  2076  sbal1  2139
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654
  Copyright terms: Public domain W3C validator