Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sb5ALTVD Unicode version

Theorem sb5ALTVD 28441
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 20 Excercise 3.a., which is sb5 2113, found in the "Answers to Starred Exercises" on page 457 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sb5ALT 28023 is sb5ALTVD 28441 without virtual deductions and was automatically derived from sb5ALTVD 28441.
1::  |-  (. [ y  /  x ] ph  ->.  [ y  /  x ] ph ).
2::  |-  [ y  /  x ] x  =  y
3:1,2:  |-  (. [ y  /  x ] ph  ->.  [ y  /  x ] ( x  =  y  /\  ph ) ).
4:3:  |-  (. [ y  /  x ] ph  ->.  E. x ( x  =  y  /\  ph  ) ).
5:4:  |-  ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph )  )
6::  |-  (. E. x ( x  =  y  /\  ph )  ->.  E. x ( x  =  y  /\  ph ) ).
7::  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph  )  ->.  ( x  =  y  /\  ph ) ).
8:7:  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph  )  ->.  ph ).
9:7:  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph  )  ->.  x  =  y ).
10:8,9:  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph  )  ->.  [ y  /  x ] ph ).
101::  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
11:101,10:  |-  ( E. x ( x  =  y  /\  ph )  ->  [ y  /  x ] ph  )
12:5,11:  |-  ( ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph  ) )  /\  ( E. x ( x  =  y  /\  ph )  ->  [ y  /  x ] ph ) )
qed:12:  |-  ( [ y  /  x ] ph  <->  E. x ( x  =  y  /\  ph )  )
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sb5ALTVD  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb5ALTVD
StepHypRef Expression
1 idn1 28077 . . . . . 6  |-  (. [
y  /  x ] ph  ->.  [ y  /  x ] ph ).
2 equsb1 2047 . . . . . 6  |-  [ y  /  x ] x  =  y
3 sban 2082 . . . . . . 7  |-  ( [ y  /  x ]
( x  =  y  /\  ph )  <->  ( [
y  /  x ]
x  =  y  /\  [ y  /  x ] ph ) )
43simplbi2com 1379 . . . . . 6  |-  ( [ y  /  x ] ph  ->  ( [ y  /  x ] x  =  y  ->  [ y  /  x ] ( x  =  y  /\  ph ) ) )
51, 2, 4e10 28208 . . . . 5  |-  (. [
y  /  x ] ph  ->.  [ y  /  x ] ( x  =  y  /\  ph ) ).
6 spsbe 2088 . . . . 5  |-  ( [ y  /  x ]
( x  =  y  /\  ph )  ->  E. x ( x  =  y  /\  ph )
)
75, 6e1_ 28140 . . . 4  |-  (. [
y  /  x ] ph  ->.  E. x ( x  =  y  /\  ph ) ).
87in1 28074 . . 3  |-  ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph ) )
9 hbs1 2118 . . . 4  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
10 idn2 28126 . . . . . 6  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph )  ->.  ( x  =  y  /\  ph ) ).
11 simpr 447 . . . . . 6  |-  ( ( x  =  y  /\  ph )  ->  ph )
1210, 11e2 28144 . . . . 5  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph )  ->.  ph ).
13 simpl 443 . . . . . 6  |-  ( ( x  =  y  /\  ph )  ->  x  =  y )
1410, 13e2 28144 . . . . 5  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph )  ->.  x  =  y ).
15 sbequ1 1930 . . . . . 6  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )
1615com12 27 . . . . 5  |-  ( ph  ->  ( x  =  y  ->  [ y  /  x ] ph ) )
1712, 14, 16e22 28184 . . . 4  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph )  ->.  [ y  /  x ] ph ).
189, 17exinst 28137 . . 3  |-  ( E. x ( x  =  y  /\  ph )  ->  [ y  /  x ] ph )
198, 18pm3.2i 441 . 2  |-  ( ( [ y  /  x ] ph  ->  E. x
( x  =  y  /\  ph ) )  /\  ( E. x
( x  =  y  /\  ph )  ->  [ y  /  x ] ph ) )
20 bi3 179 . . 3  |-  ( ( [ y  /  x ] ph  ->  E. x
( x  =  y  /\  ph ) )  ->  ( ( E. x ( x  =  y  /\  ph )  ->  [ y  /  x ] ph )  ->  ( [ y  /  x ] ph  <->  E. x ( x  =  y  /\  ph ) ) ) )
2120imp 418 . 2  |-  ( ( ( [ y  /  x ] ph  ->  E. x
( x  =  y  /\  ph ) )  /\  ( E. x
( x  =  y  /\  ph )  ->  [ y  /  x ] ph ) )  -> 
( [ y  /  x ] ph  <->  E. x
( x  =  y  /\  ph ) ) )
2219, 21e0_ 28297 1  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1546    = wceq 1647   [wsb 1653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-vd1 28073  df-vd2 28082
  Copyright terms: Public domain W3C validator