MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb6 Unicode version

Theorem sb6 2051
Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
sb6  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb6
StepHypRef Expression
1 sb56 2050 . . 3  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
21anbi2i 675 . 2  |-  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  <->  ( ( x  =  y  ->  ph )  /\  A. x ( x  =  y  ->  ph )
) )
3 df-sb 1639 . 2  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
4 sp 1728 . . 3  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
54pm4.71ri 614 . 2  |-  ( A. x ( x  =  y  ->  ph )  <->  ( (
x  =  y  ->  ph )  /\  A. x
( x  =  y  ->  ph ) ) )
62, 3, 53bitr4i 268 1  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   E.wex 1531   [wsb 1638
This theorem is referenced by:  sb5  2052  2sb6  2065  sb6a  2068  exsbOLD  2083  sbal2  2086
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639
  Copyright terms: Public domain W3C validator