MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sban Structured version   Unicode version

Theorem sban 2143
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sban  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )

Proof of Theorem sban
StepHypRef Expression
1 sbn 2117 . . 3  |-  ( [ y  /  x ]  -.  ( ph  ->  -.  ps )  <->  -.  [ y  /  x ] ( ph  ->  -.  ps ) )
2 sbim 2121 . . . 4  |-  ( [ y  /  x ]
( ph  ->  -.  ps ) 
<->  ( [ y  /  x ] ph  ->  [ y  /  x ]  -.  ps ) )
3 sbn 2117 . . . . 5  |-  ( [ y  /  x ]  -.  ps  <->  -.  [ y  /  x ] ps )
43imbi2i 304 . . . 4  |-  ( ( [ y  /  x ] ph  ->  [ y  /  x ]  -.  ps ) 
<->  ( [ y  /  x ] ph  ->  -.  [ y  /  x ] ps ) )
52, 4bitri 241 . . 3  |-  ( [ y  /  x ]
( ph  ->  -.  ps ) 
<->  ( [ y  /  x ] ph  ->  -.  [ y  /  x ] ps ) )
61, 5xchbinx 302 . 2  |-  ( [ y  /  x ]  -.  ( ph  ->  -.  ps )  <->  -.  ( [
y  /  x ] ph  ->  -.  [ y  /  x ] ps )
)
7 df-an 361 . . 3  |-  ( (
ph  /\  ps )  <->  -.  ( ph  ->  -.  ps ) )
87sbbii 1665 . 2  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  [ y  /  x ]  -.  ( ph  ->  -.  ps ) )
9 df-an 361 . 2  |-  ( ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) 
<->  -.  ( [ y  /  x ] ph  ->  -.  [ y  /  x ] ps ) )
106, 8, 93bitr4i 269 1  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   [wsb 1658
This theorem is referenced by:  sb3an  2144  sbbi  2145  sbabel  2597  cbvreu  2922  sbcan  3195  sbcang  3196  rmo3  3240  inab  3601  difab  3602  exss  4418  inopab  4997  mo5f  23964  rmo3f  23974  iuninc  24003  suppss2f  24041  fmptdF  24061  disjdsct  24082  esumpfinvalf  24458  measiuns  24563  ballotlemodife  24747  sb5ALT  28546  2uasbanh  28585  2uasbanhVD  28960  sb5ALTVD  28962
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659
  Copyright terms: Public domain W3C validator