MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sban Unicode version

Theorem sban 2008
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sban  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )

Proof of Theorem sban
StepHypRef Expression
1 sbn 2001 . . 3  |-  ( [ y  /  x ]  -.  ( ph  ->  -.  ps )  <->  -.  [ y  /  x ] ( ph  ->  -.  ps ) )
2 sbim 2004 . . . 4  |-  ( [ y  /  x ]
( ph  ->  -.  ps ) 
<->  ( [ y  /  x ] ph  ->  [ y  /  x ]  -.  ps ) )
3 sbn 2001 . . . . 5  |-  ( [ y  /  x ]  -.  ps  <->  -.  [ y  /  x ] ps )
43imbi2i 303 . . . 4  |-  ( ( [ y  /  x ] ph  ->  [ y  /  x ]  -.  ps ) 
<->  ( [ y  /  x ] ph  ->  -.  [ y  /  x ] ps ) )
52, 4bitri 240 . . 3  |-  ( [ y  /  x ]
( ph  ->  -.  ps ) 
<->  ( [ y  /  x ] ph  ->  -.  [ y  /  x ] ps ) )
61, 5xchbinx 301 . 2  |-  ( [ y  /  x ]  -.  ( ph  ->  -.  ps )  <->  -.  ( [
y  /  x ] ph  ->  -.  [ y  /  x ] ps )
)
7 df-an 360 . . 3  |-  ( (
ph  /\  ps )  <->  -.  ( ph  ->  -.  ps ) )
87sbbii 1635 . 2  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  [ y  /  x ]  -.  ( ph  ->  -.  ps ) )
9 df-an 360 . 2  |-  ( ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) 
<->  -.  ( [ y  /  x ] ph  ->  -.  [ y  /  x ] ps ) )
106, 8, 93bitr4i 268 1  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   [wsb 1630
This theorem is referenced by:  sb3an  2009  sbbi  2010  sbabel  2446  cbvreu  2763  sbcan  3034  sbcang  3035  rmo3  3079  inab  3437  difab  3438  exss  4235  inopab  4815  ballotlemodife  23052  sb5ALT  27571  2uasbanh  27610  2uasbanhVD  27967  sb5ALTVD  27969
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631
  Copyright terms: Public domain W3C validator