Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbaniota Unicode version

Theorem sbaniota 26968
Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
sbaniota  |-  ( E! x ph  ->  ( E. x ( ph  /\  ps )  <->  [. ( iota x ph )  /  x ]. ps ) )

Proof of Theorem sbaniota
StepHypRef Expression
1 eupickbi 2182 . 2  |-  ( E! x ph  ->  ( E. x ( ph  /\  ps )  <->  A. x ( ph  ->  ps ) ) )
2 sbiota1 26967 . 2  |-  ( E! x ph  ->  ( A. x ( ph  ->  ps )  <->  [. ( iota x ph )  /  x ]. ps ) )
31, 2bitrd 246 1  |-  ( E! x ph  ->  ( E. x ( ph  /\  ps )  <->  [. ( iota x ph )  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537   E!weu 2117   [.wsbc 2935   iotacio 6188
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ral 2520  df-rex 2521  df-v 2742  df-sbc 2936  df-un 3099  df-sn 3587  df-pr 3588  df-uni 3769  df-iota 6190
  Copyright terms: Public domain W3C validator