MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc2or Unicode version

Theorem sbc2or 3129
Description: The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for  [ A  /  x ] ph behavior at proper classes, matching the sbc5 3145 (false) and sbc6 3147 (true) conclusions. This is interesting since dfsbcq 3123 and dfsbcq2 3124 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem doesn't tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable  y that  ph or  A may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbc2or  |-  ( (
[. A  /  x ]. ph  <->  E. x ( x  =  A  /\  ph ) )  \/  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem sbc2or
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3124 . . . 4  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
2 eqeq2 2413 . . . . . 6  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
32anbi1d 686 . . . . 5  |-  ( y  =  A  ->  (
( x  =  y  /\  ph )  <->  ( x  =  A  /\  ph )
) )
43exbidv 1633 . . . 4  |-  ( y  =  A  ->  ( E. x ( x  =  y  /\  ph )  <->  E. x ( x  =  A  /\  ph )
) )
5 sb5 2149 . . . 4  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
61, 4, 5vtoclbg 2972 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ph  <->  E. x ( x  =  A  /\  ph ) ) )
76orcd 382 . 2  |-  ( A  e.  _V  ->  (
( [. A  /  x ]. ph  <->  E. x ( x  =  A  /\  ph ) )  \/  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) ) )
8 pm5.15 860 . . 3  |-  ( (
[. A  /  x ]. ph  <->  E. x ( x  =  A  /\  ph ) )  \/  ( [. A  /  x ]. ph  <->  -.  E. x
( x  =  A  /\  ph ) ) )
9 vex 2919 . . . . . . . . . 10  |-  x  e. 
_V
10 eleq1 2464 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  e.  _V  <->  A  e.  _V ) )
119, 10mpbii 203 . . . . . . . . 9  |-  ( x  =  A  ->  A  e.  _V )
1211adantr 452 . . . . . . . 8  |-  ( ( x  =  A  /\  ph )  ->  A  e.  _V )
1312con3i 129 . . . . . . 7  |-  ( -.  A  e.  _V  ->  -.  ( x  =  A  /\  ph ) )
1413nexdv 1937 . . . . . 6  |-  ( -.  A  e.  _V  ->  -. 
E. x ( x  =  A  /\  ph ) )
1511con3i 129 . . . . . . . 8  |-  ( -.  A  e.  _V  ->  -.  x  =  A )
1615pm2.21d 100 . . . . . . 7  |-  ( -.  A  e.  _V  ->  ( x  =  A  ->  ph ) )
1716alrimiv 1638 . . . . . 6  |-  ( -.  A  e.  _V  ->  A. x ( x  =  A  ->  ph ) )
1814, 172thd 232 . . . . 5  |-  ( -.  A  e.  _V  ->  ( -.  E. x ( x  =  A  /\  ph )  <->  A. x ( x  =  A  ->  ph )
) )
1918bibi2d 310 . . . 4  |-  ( -.  A  e.  _V  ->  ( ( [. A  /  x ]. ph  <->  -.  E. x
( x  =  A  /\  ph ) )  <-> 
( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) ) )
2019orbi2d 683 . . 3  |-  ( -.  A  e.  _V  ->  ( ( ( [. A  /  x ]. ph  <->  E. x
( x  =  A  /\  ph ) )  \/  ( [. A  /  x ]. ph  <->  -.  E. x
( x  =  A  /\  ph ) ) )  <->  ( ( [. A  /  x ]. ph  <->  E. x
( x  =  A  /\  ph ) )  \/  ( [. A  /  x ]. ph  <->  A. x
( x  =  A  ->  ph ) ) ) ) )
218, 20mpbii 203 . 2  |-  ( -.  A  e.  _V  ->  ( ( [. A  /  x ]. ph  <->  E. x
( x  =  A  /\  ph ) )  \/  ( [. A  /  x ]. ph  <->  A. x
( x  =  A  ->  ph ) ) ) )
227, 21pm2.61i 158 1  |-  ( (
[. A  /  x ]. ph  <->  E. x ( x  =  A  /\  ph ) )  \/  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649   [wsb 1655    e. wcel 1721   _Vcvv 2916   [.wsbc 3121
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-v 2918  df-sbc 3122
  Copyright terms: Public domain W3C validator