Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel1gv Structured version   Unicode version

Theorem sbcel1gv 3222
 Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcel1gv
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem sbcel1gv
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3166 . 2
2 eleq1 2498 . 2
3 clelsb3 2540 . 2
41, 2, 3vtoclbg 3014 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wsb 1659   wcel 1726  wsbc 3163 This theorem is referenced by:  tfinds2  4846  filuni  17922  sbcoreleleq  28693  onfrALTlem4  28703  sbcoreleleqVD  29045  onfrALTlem4VD  29072  bnj110  29303 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-sbc 3164
 Copyright terms: Public domain W3C validator